Beampattern synthesis for active RIS-assisted radar with sidelobe level minimization

被引:6
作者
Ran, Longyao [1 ]
Chen, Shengyao [1 ]
Xi, Feng [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing, Peoples R China
关键词
Reconfigurable intelligent surface; Beampattern synthesis; Alternating direction method of multipliers; RECONFIGURABLE INTELLIGENT SURFACES;
D O I
10.1016/j.sigpro.2022.108925
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To enhance the performance, reconfigurable intelligent surface (RIS) is now employed in monostatic radars since it creates a new path between the radar and the target by artificially reflecting radar sig-nals and thus provides novel degrees of freedom. This correspondence studies the transmit beampattern synthesis for an active RIS-assisted monostatic radar via minimizing the sidelobe levels. The proposed beampattern synthesis is coined as a nonconvex and nonlinear optimization problem which is solved by jointly optimizing the beamforming weights of the transmitter and the phase shift and amplification ma-trix of the active RIS. The auxiliary variables are first introduced to simplify the nonconvex constraints, and two variables are then alternatively optimized by the alternating direction method of multipliers (ADMM) where their close-form optimal solutions are derived. Numerical results show that the active RIS-assisted radar has a significantly lower sidelobe level than conventional monostatic radars.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Reconfigurable Intelligent Surfaces for N-LOS Radar Surveillance
    Aubry, Augusto
    De Maio, Antonio
    Rosamilia, Massimo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 10735 - 10749
  • [2] Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications
    Bjornson, Emil
    Wymeersch, Henk
    Matthiesen, Bho
    Popovski, Petar
    Sanguinetti, Luca
    de Carvalho, Elisabeth
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (02) : 135 - 158
  • [3] Reconfigurable Intelligent Surfaces: Three Myths and Two Critical Questions
    Bjornson, Emil
    Ozdogan, Ozgecan
    Larsson, Erik G.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (12) : 90 - 96
  • [4] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [5] Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces
    Buzzi, Stefano
    Grossi, Emanuele
    Lops, Marco
    Venturino, Luca
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1749 - 1763
  • [6] Radar Target Detection Aided by Reconfigurable Intelligent Surfaces
    Buzzi, Stefano
    Grossi, Emanuele
    Lops, Marco
    Venturino, Luca
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1315 - 1319
  • [7] Chepuri SP, 2022, Arxiv, DOI arXiv:2211.01003
  • [8] Elbir AM, 2022, Arxiv, DOI arXiv:2204.07265
  • [9] Esmaeilbeig Z, 2022, IEEE SENSOR ARRAY MU
  • [10] Constant Modulus MIMO Radar Waveform Design With Minimum Peak Sidelobe Transmit Beampattern
    Fan, Wen
    Liang, Junli
    Li, Jian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (16) : 4207 - 4222