Moisture behavior of lithium-ion battery components along the production process

被引:25
作者
Kosfeld, Malte [1 ]
Westphal, Bastian [1 ]
Kwade, Arno [2 ]
机构
[1] Volkswagen AG, Berliner Ring 2, D-38440 Wolfsburg, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 5, D-38104 Braunschweig, Germany
关键词
lithium-ion battery production; Water content; Adsorption kinetics; Baking; Secondary drying; Post-drying; WATER; ELECTROLYTE; CONTAMINATION; PERFORMANCE; CATHODES; VACUUM; SYSTEM;
D O I
10.1016/j.est.2022.106174
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the ongoing development of producing high-quality lithium-ion batteries (LIB), the influence of moisture on the individual components and ultimately the entire cell is an important aspect. It is well known that water can lead to significant aging effects on the components and the cell itself. Therefore it is urgent to understand the moisture behavior of the most important components anode, cathode and separator along the entire cell pro-duction as precisely as possible. This work is intended to realize just that, by creating application-related ref-erences, point out and explain difficulties as well as challenges and finally work out and provide solutions. At first it describes the amount of moisture these components can adsorb and desorb and which components of the electrodes take up particularly much or little moisture. On this basis the adsorption kinetics of anode, cathode and separator material are investigated, showing how quickly the described equilibrium moisture contents are achieved under typical manufacturing conditions. A linear time dependency was observed which shows that all components adsorb a high share of the equilibrium moisture in the first minutes. To give the reader a better impression for the overall process, real values of the various moisture contents of anode, cathode and separator material along the entire process chain during a production campaign are shown. Since moisture in the com-ponents cannot be completely avoided during manufacturing, a total of five different process variants for minimizing residual moisture are finally described, analyzed and compared with each other. General advantages and disadvantages, impact of the individual process parameters, residual moisture contents as well as energy and media consumption of electrode pack baking, coil baking, roll-to-roll baking, cell stack baking or pure exposure to dry room atmosphere are discussed. Finally an overall strategy to minimize water content in LIB components along the entire production is proposed regarding all established results.
引用
收藏
页数:16
相关论文
共 45 条
[1]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[2]  
[Anonymous], 2019, A Kind of Drying Lithium Ion Battery Method, Patent No. [CN110375521A, 110375521]
[3]  
[Anonymous], 2010, Drying Method and Manufacturing Method of Electrode Sheet of Lithium-ion Secondary Battery, Patent No. [WO2012075893A1, 2012075893]
[4]   On the role of water contamination in rechargeable Li batteries [J].
Aurbach, D ;
Weissman, I ;
Zaban, A ;
Dan, P .
ELECTROCHIMICA ACTA, 1999, 45 (07) :1135-1140
[5]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[6]   Reaction of water with hexafluorophosphates and with Li bis(perfluoroethylsulfonyl)imide salt [J].
Barlow, CG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (08) :362-364
[7]   The Impact of Intentionally Added Water to the Electrolyte of Li-ion Cells [J].
Burns, J. C. ;
Sinha, N. N. ;
Jain, Gaurav ;
Ye, Hui ;
VanElzen, Collette M. ;
Scott, Erik ;
Xiao, A. ;
Lamanna, W. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2281-A2287
[8]   The effects of ambient storage conditions on the structural and electrochemical properties of NMC-811 cathodes for Li-ion batteries [J].
Busa, Chiara ;
Belekoukia, Meltiani ;
Loveridge, Melanie J. .
ELECTROCHIMICA ACTA, 2021, 366
[9]  
Daniel C., 2013, FINAL REPORT TRANSFO
[10]   Lithium ion battery degradation: what you need to know [J].
Edge, Jacqueline S. ;
O'Kane, Simon ;
Prosser, Ryan ;
Kirkaldy, Niall D. ;
Patel, Anisha N. ;
Hales, Alastair ;
Ghosh, Abir ;
Ai, Weilong ;
Chen, Jingyi ;
Yang, Jiang ;
Li, Shen ;
Pang, Mei-Chin ;
Bravo Diaz, Laura ;
Tomaszewska, Anna ;
Marzook, M. Waseem ;
Radhakrishnan, Karthik N. ;
Wang, Huizhi ;
Patel, Yatish ;
Wu, Billy ;
Offer, Gregory J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) :8200-8221