Fractional viscoelastic models with Caputo generalized fractional derivative

被引:26
作者
Bhangale, Nikita [1 ]
Kachhia, Krunal B. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Charotar Univ Sci & Technol CHARUSAT, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
[2] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
fractional modeling; generalized Caputo fractional derivative; mechanical properties of models; viscoelastic models; CALCULUS; SYSTEM;
D O I
10.1002/mma.7229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on fractional Maxwell model of viscoelastic materials, which are a generalization of classic Maxwell model to noninteger order derivatives. We present and discuss formulations of the fractional order viscoelastic model and give physical interpretations of the model by using viscoelastic functions. We apply the generalized Caputo fractional derivative to viscoelastic models, namely fractional Maxwell model, fractional Kelvin-Voigt model, and fractional Zener model. The stress relaxation module and creep compliance for each model are derived analytically using generalized Caputo fractional derivative. We analyze effect of alpha and newly introduced parameter rho in all these models. The result shows an effect on viscoelastic models using fractional operator.
引用
收藏
页码:7835 / 7846
页数:12
相关论文
共 50 条
  • [41] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [42] Variational Problems Involving a Caputo-Type Fractional Derivative
    Almeida, Ricardo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 276 - 294
  • [43] Modeling the fractional non-linear Schrodinger equation via Liouville-Caputo fractional derivative
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    Baleanu, Dumitru
    OPTIK, 2018, 162 : 1 - 7
  • [44] Two compartmental fractional derivative model with general fractional derivative
    Miskovic-Stankovic, Vesna
    Janev, Marko
    Atanackovic, Teodor M.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2023, 50 (02) : 79 - 87
  • [45] A Numerical Solution of Generalized Caputo Fractional Initial Value Problems
    Saadeh, Rania
    Abdoon, Mohamed A.
    Qazza, Ahmad
    Berir, Mohammed
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [46] Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations
    Wei, Qing
    Wang, Wei
    Zhou, Hongwei
    Metzler, Ralf
    Chechkin, Aleksei
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [47] A Numerical Scheme of a Fractional Coupled System of Volterra Integro -Differential Equations with the Caputo Fabrizio Fractional Derivative
    Lahoucine, Tadoummant
    Rachid, Echarghaoui
    CONTEMPORARY MATHEMATICS, 2024, 5 (03): : 3740 - 3761
  • [48] The Application of Fractional Derivative Viscoelastic Models in the Finite Element Method: Taking Several Common Models as Examples
    Zheng, Guozhi
    Zhang, Naitian
    Lv, Songtao
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [49] Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative
    Vu, Ho
    Ghanbari, Behzad
    Ngo Van Hoa
    FUZZY SETS AND SYSTEMS, 2022, 429 : 1 - 27
  • [50] Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    MECCANICA, 2019, 54 (1-2) : 155 - 167