Fractional viscoelastic models with Caputo generalized fractional derivative

被引:25
|
作者
Bhangale, Nikita [1 ]
Kachhia, Krunal B. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Charotar Univ Sci & Technol CHARUSAT, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
[2] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
fractional modeling; generalized Caputo fractional derivative; mechanical properties of models; viscoelastic models; CALCULUS; SYSTEM;
D O I
10.1002/mma.7229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on fractional Maxwell model of viscoelastic materials, which are a generalization of classic Maxwell model to noninteger order derivatives. We present and discuss formulations of the fractional order viscoelastic model and give physical interpretations of the model by using viscoelastic functions. We apply the generalized Caputo fractional derivative to viscoelastic models, namely fractional Maxwell model, fractional Kelvin-Voigt model, and fractional Zener model. The stress relaxation module and creep compliance for each model are derived analytically using generalized Caputo fractional derivative. We analyze effect of alpha and newly introduced parameter rho in all these models. The result shows an effect on viscoelastic models using fractional operator.
引用
收藏
页码:7835 / 7846
页数:12
相关论文
共 50 条
  • [41] Study on generalized fuzzy fractional human liver model with Atangana-Baleanu-Caputo fractional derivative
    Verma, Lalchand
    Meher, Ramakanta
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [42] Incomplete Caputo fractional derivative operators
    Mehmet Ali Özarslan
    Ceren Ustaoglu
    Advances in Difference Equations, 2018
  • [43] Fractional Telegraph Equation with the Caputo Derivative
    Ashurov, Ravshan
    Saparbayev, Rajapboy
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [44] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024,
  • [45] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1173 - 1183
  • [46] Initialization issues of the Caputo fractional derivative
    Achar, B. N. Narahari
    Lorenzo, Carl F.
    Hartley, Tom T.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1449 - 1456
  • [47] A new fractional integral associated with the Caputo–Fabrizio fractional derivative
    M. Moumen Bekkouche
    H. Guebbai
    M. Kurulay
    S. Benmahmoud
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1277 - 1288
  • [48] Numerical solvability of generalized Bagley-Torvik fractional models under Caputo-Fabrizio derivative
    Hasan, Shatha
    Djeddi, Nadir
    Al-Smadi, Mohammed
    Al-Omari, Shrideh
    Momani, Shaher
    Fulga, Andreea
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [49] Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative
    Djeddi, Nadir
    Hasan, Shatha
    Al-Smadi, Mohammed
    Momani, Shaher
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5111 - 5122
  • [50] General fractional financial models of awareness with Caputo-Fabrizio derivative
    Mahdy, Amr M. S.
    Amer, Yasser Abd Elaziz
    Mohamed, Mohamed S.
    Sobhy, Eslam
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (11)