Fractional viscoelastic models with Caputo generalized fractional derivative

被引:25
|
作者
Bhangale, Nikita [1 ]
Kachhia, Krunal B. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Charotar Univ Sci & Technol CHARUSAT, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
[2] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
fractional modeling; generalized Caputo fractional derivative; mechanical properties of models; viscoelastic models; CALCULUS; SYSTEM;
D O I
10.1002/mma.7229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on fractional Maxwell model of viscoelastic materials, which are a generalization of classic Maxwell model to noninteger order derivatives. We present and discuss formulations of the fractional order viscoelastic model and give physical interpretations of the model by using viscoelastic functions. We apply the generalized Caputo fractional derivative to viscoelastic models, namely fractional Maxwell model, fractional Kelvin-Voigt model, and fractional Zener model. The stress relaxation module and creep compliance for each model are derived analytically using generalized Caputo fractional derivative. We analyze effect of alpha and newly introduced parameter rho in all these models. The result shows an effect on viscoelastic models using fractional operator.
引用
收藏
页码:7835 / 7846
页数:12
相关论文
共 50 条
  • [21] Modeling viscoelastic damping insertion in lightweight structures with generalized maxwell and fractional derivative models
    Pirk, R.
    Rouleau, L.
    D'Ortona, V.
    Desmet, W.
    Pluymers, B.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 2165 - 2178
  • [22] On generalized fractional flux advection-dispersion equation and Caputo derivative
    Golbabai, A.
    Sayevand, K.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 425 - 430
  • [23] Fuzzy fractional differential equations under generalized fuzzy Caputo derivative
    Allahviranloo, T.
    Armand, A.
    Gouyandeh, Z.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1481 - 1490
  • [24] Ulam Stability for Delay Fractional Differential Equations with a Generalized Caputo Derivative
    Ameen, Raad
    Jarad, Fahd
    Abdeljawad, Thabet
    FILOMAT, 2018, 32 (15) : 5265 - 5274
  • [25] Langevin Equations with Generalized Proportional Hadamard-Caputo Fractional Derivative
    Barakat, M. A.
    Soliman, Ahmed H.
    Hyder, Abd-Allah
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [26] Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations
    Xuhao Li
    Patricia J. Y. Wong
    Journal of Applied Mathematics and Computing, 2023, 69 : 4689 - 4716
  • [27] Application of fractional derivative models in linear viscoelastic problems
    Sasso, M.
    Palmieri, G.
    Amodio, D.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2011, 15 (04) : 367 - 387
  • [28] Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations
    Li, Xuhao
    Wong, Patricia J. Y.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4689 - 4716
  • [29] Computational Simulations for Solving a Class of Fractional Models via Caputo-Fabrizio Fractional Derivative
    Kanth, A. S. V. Ravi
    Garg, Neetu
    6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 : 476 - 482
  • [30] Fractional derivative models for viscoelastic materials at finite deformations
    Shen, Li-Jun
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 190 : 226 - 237