Fractional viscoelastic models with Caputo generalized fractional derivative

被引:25
|
作者
Bhangale, Nikita [1 ]
Kachhia, Krunal B. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Charotar Univ Sci & Technol CHARUSAT, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
[2] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
fractional modeling; generalized Caputo fractional derivative; mechanical properties of models; viscoelastic models; CALCULUS; SYSTEM;
D O I
10.1002/mma.7229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on fractional Maxwell model of viscoelastic materials, which are a generalization of classic Maxwell model to noninteger order derivatives. We present and discuss formulations of the fractional order viscoelastic model and give physical interpretations of the model by using viscoelastic functions. We apply the generalized Caputo fractional derivative to viscoelastic models, namely fractional Maxwell model, fractional Kelvin-Voigt model, and fractional Zener model. The stress relaxation module and creep compliance for each model are derived analytically using generalized Caputo fractional derivative. We analyze effect of alpha and newly introduced parameter rho in all these models. The result shows an effect on viscoelastic models using fractional operator.
引用
收藏
页码:7835 / 7846
页数:12
相关论文
共 50 条
  • [1] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228
  • [2] On the Stability of Fractional Differential Equations Involving Generalized Caputo Fractional Derivative
    Tran, Minh Duc
    Ho, Vu
    Van, Hoa Ngo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [3] Generalized Laplace Transform and Tempered ?-Caputo Fractional Derivative
    Medved, Milan
    Pospisil, Michal
    MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (01) : 146 - 162
  • [4] Generalized Sumudu transform and tempered ξ-Caputo fractional derivative
    Elkhalloufy, Khadija
    Hilal, Khalid
    Kajouni, Ahmed
    FILOMAT, 2024, 38 (26) : 9213 - 9221
  • [6] Fractional derivative models of viscoelastic materials
    Hu, Wei-Bing
    He, Jian
    Xi'an Jianzhu Keji Daxue Xuebao/Journal of Xi'an University of Architecture & Technology, 2002, 34 (03):
  • [7] Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative
    Bhangale, N.
    Kachhia, K. B.
    REVISTA MEXICANA DE FISICA, 2020, 66 (06) : 848 - 855
  • [8] Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
    Hilton, Harry H.
    MATERIALS, 2012, 5 (01) : 169 - 191
  • [9] Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative
    Odibat, Zaid
    Baleanu, Dumitru
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1003 - 1014
  • [10] Numerical solvability of generalized Bagley–Torvik fractional models under Caputo–Fabrizio derivative
    Shatha Hasan
    Nadir Djeddi
    Mohammed Al-Smadi
    Shrideh Al-Omari
    Shaher Momani
    Andreea Fulga
    Advances in Difference Equations, 2021