Fractional viscoelastic models with Caputo generalized fractional derivative

被引:26
作者
Bhangale, Nikita [1 ]
Kachhia, Krunal B. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Charotar Univ Sci & Technol CHARUSAT, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
[2] CENIDET, CONACyT Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
fractional modeling; generalized Caputo fractional derivative; mechanical properties of models; viscoelastic models; CALCULUS; SYSTEM;
D O I
10.1002/mma.7229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on fractional Maxwell model of viscoelastic materials, which are a generalization of classic Maxwell model to noninteger order derivatives. We present and discuss formulations of the fractional order viscoelastic model and give physical interpretations of the model by using viscoelastic functions. We apply the generalized Caputo fractional derivative to viscoelastic models, namely fractional Maxwell model, fractional Kelvin-Voigt model, and fractional Zener model. The stress relaxation module and creep compliance for each model are derived analytically using generalized Caputo fractional derivative. We analyze effect of alpha and newly introduced parameter rho in all these models. The result shows an effect on viscoelastic models using fractional operator.
引用
收藏
页码:7835 / 7846
页数:12
相关论文
共 50 条
  • [1] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228
  • [2] Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative
    Bhangale, N.
    Kachhia, K. B.
    REVISTA MEXICANA DE FISICA, 2020, 66 (06) : 848 - 855
  • [3] Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
    Hilton, Harry H.
    MATERIALS, 2012, 5 (01) : 169 - 191
  • [4] Application of fractional modified taylor wavelets in the dynamical analysis of fractional electrical circuits under generalized caputo fractional derivative
    Rayal, Ashish
    Anand, Monika
    Srivastava, V. K.
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [5] Fractional viscoelastic models with novel variable and constant order fractional derivative operators
    Kachia, Krunal
    Gomez-Aguilar, J. F.
    REVISTA MEXICANA DE FISICA, 2022, 68 (02)
  • [6] Fuzzy fractional differential equations under generalized fuzzy Caputo derivative
    Allahviranloo, T.
    Armand, A.
    Gouyandeh, Z.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1481 - 1490
  • [7] Application of fractional derivative models in linear viscoelastic problems
    Sasso, M.
    Palmieri, G.
    Amodio, D.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2011, 15 (04) : 367 - 387
  • [8] A new iterative method with ρ-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2125 - 2138
  • [9] Fractional Derivative Models of Viscoelastic Materials for Large Extension
    Fukunaga, Masataka
    Shimizu, Nobuyuki
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [10] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183