Some matrix inequalities related to norm and singular values

被引:0
作者
Xiao, Xiaoyan [1 ]
Zhang, Feng [1 ]
Cao, Yuxin [2 ]
Zhang, Chunwen [2 ]
机构
[1] Southeast Univ, Dept Math, Chengxian Coll, Nanjing 210000, Peoples R China
[2] Southeast Univ, Dept Elect & Comp Engn, Chengxian Coll, Nanjing 210000, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
singular values; weak log-majorization; normal matrices;
D O I
10.3934/math.2024207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note, we presented a new proof of a weak log-majorization inequality for normal matrices and obtained a singular value inequality related to positive semi-definite matrices. What's more, we also gave an example to show that some conditions in an existing norm inequality are necessary.
引用
收藏
页码:4205 / 4210
页数:6
相关论文
共 11 条
[1]   A NORM INEQUALITY FOR PAIRS OF COMMUTING POSITIVE SEMIDEFINITE MATRICES [J].
Audenaert, Koenraad M. R. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 :80-84
[2]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[3]  
Bhatia R., 1997, MATRIX ANAL, DOI 10.1007/978-1-4612-0653-8
[4]   Norm inequalities related to the matrix geometric mean [J].
Bhatia, Rajendra ;
Grover, Priyanka .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) :726-733
[5]  
Chen D, 2016, B IRAN MATH SOC, V42, P143
[6]  
Hayajneh M., 2017, Math. Inequal. Appl, V20, P225
[7]   Two inequalities of unitarily invariant norms for matrices [J].
Wu, Xuesha .
SCIENCEASIA, 2019, 45 (04) :395-397
[8]   Inequalities for eigenvalues of matrices [J].
Xu, Xiaozeng ;
He, Chuanjiang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[9]   Survey on applications of algebraic state space theory of logical systems to finite state machines [J].
Yan, Yongyi ;
Cheng, Daizhan ;
Feng, Jun-E. ;
Li, Haitao ;
Yue, Jumei .
SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (01)
[10]  
Zhan XZ, 2000, SIAM J MATRIX ANAL A, V22, P819, DOI 10.1137/S0895479800369840