Comparative Analysis of Empirical and Machine Learning Models for Chla Extraction Using Sentinel-2 and Landsat OLI Data: Opportunities, Limitations, and Challenges

被引:15
作者
Chegoonian, Amir M. [1 ,2 ]
Pahlevan, Nima [3 ,4 ]
Zolfaghari, Kiana [1 ]
Leavitt, Peter R. [2 ]
Davies, John-Mark [5 ,6 ]
Baulch, Helen M. [6 ]
Duguay, Claude R. [1 ,7 ]
机构
[1] Univ Waterloo, Dept Geog & Environm Management, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Regina, Inst Environm Change & Soc, 37 Wascana Pkway, Regina, SK S4S 0A2, Canada
[3] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Sci Syst & Applicat SSAI Inc, Lanham, MD 20706 USA
[5] Saskatchewan Water Secur Agcy, 10-3904 Millar Ave, Saskatoon, SK S7P 0B1, Canada
[6] Univ Saskatchewan, Sch Environm & Sustainabil, 105 Adm Pl, Saskatoon, SK S7N 5A2, Canada
[7] H2O Geomat Inc, 151 Charles St W 100, Kitchener, ON N2G 1H6, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
CHLOROPHYLL-A CONCENTRATIONS; INHERENT OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION; PHYTOPLANKTON BLOOMS; REMOTE ESTIMATION; CHESAPEAKE BAY; ALGAL BLOOMS; COASTAL; INLAND; OCEAN;
D O I
10.1080/07038992.2023.2215333
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote retrieval of near-surface chlorophyll-a (Chla) concentration in small inland waters is challenging due to substantial optical interferences of various water constituents and uncertainties in the atmospheric correction (AC) process. Although various algorithms have been developed to estimate Chla from moderate-resolution terrestrial missions (similar to 10-60 m), the production of both accurate distribution maps and time series of Chla has proven challenging, limiting the use of remote analyses for lake monitoring. Here, we develop a support vector regression (SVR) model, which uses satellite-derived remote-sensing reflectance spectra (R-rs(d)) from Sentinel-2 and Landsat-8 images as input for Chla retrieval in a representative eutrophic prairie lake, Buffalo Pound Lake (BPL), Saskatchewan, Canada. Validated against in situ Chla from seven ice-free seasons (N 200; 2014-2020), the SVR model outperformed both locally tuned, Rdrs-fed empirical models (Normalized Difference Chlorophyll Index, 2 and 3-band, and OC3) and Mixture Density Networks (MDNs) by 15-65%, while exhibiting comparable performance to a locally trained MDN, with an error of similar to 35%. Comparison of Chla retrieval models, AC processors (iCOR, ACOLITE), and radiometric products (Rayleigh corrected, surface, and top-of-atmosphere reflectance) showed that the best Chla maps and optimal time series (up to 100 mg m(-3)) were produced using a coupled SVR-iCOR system.
引用
收藏
页数:29
相关论文
共 112 条
[1]   Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand [J].
Allan, M. G. ;
Hamilton, D. P. ;
Hicks, B. J. ;
Brabyn, L. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (07) :2037-2055
[2]  
[Anonymous], 1995, STANDARD METHODS EXA, V19th
[3]   Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes [J].
Ansper, Ave ;
Alikas, Krista .
REMOTE SENSING, 2019, 11 (01)
[4]   Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe [J].
Babin, M ;
Stramski, D ;
Ferrari, GM ;
Claustre, H ;
Bricaud, A ;
Obolensky, G ;
Hoepffner, N .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C7)
[5]   Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations [J].
Beck, Richard ;
Zhan, Shengan ;
Liu, Hongxing ;
Tong, Susanna ;
Yang, Bo ;
Xu, Min ;
Ye, Zhaoxia ;
Huang, Yan ;
Shu, Song ;
Wu, Qiusheng ;
Wang, Shujie ;
Berling, Kevin ;
Murray, Andrew ;
Emery, Erich ;
Reif, Molly ;
Harwood, Joseph ;
Young, Jade ;
Nietch, Christopher ;
Macke, Dana ;
Martin, Mark ;
Stillings, Garrett ;
Stump, Richard ;
Su, Haibin .
REMOTE SENSING OF ENVIRONMENT, 2016, 178 :15-30
[6]   EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes [J].
Binding, C. E. ;
Pizzolato, L. ;
Zeng, C. .
ECOLOGICAL INDICATORS, 2021, 121
[7]   Time series analysis of algal blooms in Lake of the Woods using the MERIS maximum chlorophyll index [J].
Binding, Caren E. ;
Greenberg, Tracie A. ;
Bukata, Robert P. .
JOURNAL OF PLANKTON RESEARCH, 2011, 33 (12) :1847-1852
[8]  
Boss E. S., 2006, REMOTE SENSING INHER
[9]   Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8 [J].
Bresciani, M. ;
Cazzaniga, I. ;
Austoni, M. ;
Sforzi, T. ;
Buzzi, F. ;
Morabito, G. ;
Giardino, C. .
HYDROBIOLOGIA, 2018, 824 (01) :197-214
[10]  
Bryan A.F., 2005, P SPIE