THE GENERALISED HAUSDORFF MEASURE OF SETS OF DIRICHLET NON-IMPROVABLE NUMBERS

被引:15
作者
Bos, Philip [1 ]
Hussain, Mumtaz [1 ]
Simmons, David [2 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo 3552, Australia
[2] Univ York, Dept Math, York, England
基金
澳大利亚研究理事会;
关键词
PRINCIPLE;
D O I
10.1090/proc/16222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let psi: R+ -> R+ be a non-increasing function. A real number x is said to be psi-Dirichlet improvable if the system |qx - p| < psi (t) and |q| < thas a non-trivial integer solution for all large enough t. Denote the collection of such points by D(psi). In this paper, we prove a zero-infinity law valid for all dimension functions under natural non-restrictive conditions. Some of the consequences are zero-infinity laws, for all essentially sublinear dimension functions proved by Hussain-Kleinbock-Wadleigh-Wang [Mathematika 64 (2018), pp. 502-518], for some non-essentially sublinear dimension functions, and for all dimension functions but with a growth condition on the approximating function.
引用
收藏
页码:1823 / 1838
页数:16
相关论文
共 15 条
[1]  
Bakhtawar A, 2022, arXiv
[2]   The sets of Dirichlet non-improvable numbers versus well-approximable numbers [J].
Bakhtawar, Ayreena ;
Bos, Philip ;
Hussain, Mumtaz .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) :3217-3235
[3]   A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures [J].
Beresnevich, Victor ;
Velani, Sanju .
ANNALS OF MATHEMATICS, 2006, 164 (03) :971-992
[4]  
Bernik V.I., 1999, Cambridge Tracts in Mathematics, V137
[5]  
Davenport H., 1970, S MATH, VIV, P113
[6]  
Falconer K, 2014, Mathematical foundations and applications, V3rd
[7]   Metric properties of the product of consecutive partial quotients in continued fractions [J].
Huang, Lingling ;
Wu, Jun ;
Xu, Jian .
ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) :901-943
[8]   UNIFORMLY NON-IMPROVABLE DIRICHLET SET VIA CONTINUED FRACTIONS [J].
Huang, Lingling ;
Wu, Jun .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) :4617-4624
[9]   A GENERAL PRINCIPLE FOR HAUSDORFF MEASURE [J].
Hussain, Mumtaz ;
Simmons, David .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) :3897-3904
[10]   HAUSDORFF MEASURE OF SETS OF DIRICHLET NON-IMPROVABLE NUMBERS [J].
Hussain, Mumtaz ;
Kleinbock, Dmitry ;
Wadleigh, Nick ;
Wang, Bao-Wei .
MATHEMATIKA, 2018, 64 (02) :502-518