Circularly Polarized Light-Enabled Chiral Nanomaterials: From Fabrication to Application

被引:61
作者
Hao, Changlong [1 ]
Wang, Gaoyang [1 ]
Chen, Chen [1 ]
Xu, Jun [2 ]
Xu, Chuanlai [1 ]
Kuang, Hua [1 ]
Xu, Liguang [1 ]
机构
[1] Jiangnan Univ, Sch Food Sci & Technol, Int Joint Res Lab Biointerface & Biodetect, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis, Dept Neurol, 119 South 4th Ring West Rd, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Circularly polarized light; Chiral; Nanomaterials; Fabrication; Application; SEMICONDUCTOR NANOPARTICLES; ENANTIOSELECTIVE SYNTHESIS; POLYDIACETYLENE FILM; MOLECULAR CHIRALITY; OPTICAL CHIRALITY; SYMMETRY-BREAKING; AMINO-ACID; INDUCTION; POLYMER; DICHROISM;
D O I
10.1007/s40820-022-01005-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For decades, chiral nanomaterials have been extensively studied because of their extraordinary properties. Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing, asymmetric catalysis, optical devices, and negative index materials. Circularly polarized light (CPL) is the most attractive source for chirality owing to its high availability, and now it has been used as a chiral source for the preparation of chiral matter. In this review, the recent progress in the field of CPL-enabled chiral nanomaterials is summarized. Firstly, the recent advancements in the fabrication of chiral materials using circularly polarized light are described, focusing on the unique strategies. Secondly, an overview of the potential applications of chiral nanomaterials driven by CPL is provided, with a particular emphasis on biosensing, catalysis, and phototherapy. Finally, a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.
引用
收藏
页数:19
相关论文
共 100 条
[41]   Ultraviolet-Visible Chiroptical Activity of Aluminum Nanostructures [J].
Liu, Junjun ;
Yang, Lin ;
Zhang, Han ;
Wang, Jianfang ;
Huang, Zhifeng .
SMALL, 2017, 13 (39)
[42]   Plasmonic Chiral Nanostructures: Chiroptical Effects and Applications [J].
Luo, Yang ;
Chi, Cheng ;
Jiang, Meiling ;
Li, Ruipeng ;
Zu, Shuai ;
Li, Yu ;
Fang, Zheyu .
ADVANCED OPTICAL MATERIALS, 2017, 5 (16)
[43]  
Ma JZ, 2022, ANGEW CHEM INT EDIT, V61, DOI [10.1002/ange.202201055, 10.1002/anie.202201055, 10.1002/anie.202116219]
[44]   Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications [J].
Ma, Wei ;
Hao, Changlong ;
Sun, Maozhong ;
Xu, Liguang ;
Xu, Chuanlai ;
Kuang, Hua .
MATERIALS HORIZONS, 2018, 5 (02) :141-161
[45]   Chiral Inorganic Nanostructures [J].
Ma, Wei ;
Xu, Liguang ;
de Moura, Andre F. ;
Wu, Xiaoling ;
Kuang, Hua ;
Xu, Chuanlai ;
Kotov, Nicholas A. .
CHEMICAL REVIEWS, 2017, 117 (12) :8041-8093
[46]   Preparation of chiral polydiacetylene film from achiral monomers using circularly polarized light [J].
Manaka, Takaaki ;
Kon, Hideki ;
Ohshima, Yuki ;
Zou, Gang ;
Iwamoto, Mitsumasa .
CHEMISTRY LETTERS, 2006, 35 (09) :1028-1029
[47]  
Mark AG, 2013, NAT MATER, V12, P802, DOI [10.1038/NMAT3685, 10.1038/nmat3685]
[48]   Photonenergy-Controlled Symmetry Breaking with Circularly Polarized Light [J].
Meinert, Cornelia ;
Hoffmann, Soren V. ;
Cassam-Chenai, Patrick ;
Evans, Amanda C. ;
Giri, Chaitanya ;
Nahon, Laurent ;
Meierhenrich, Uwe J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (01) :210-214
[49]   Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects [J].
Mokashi-Punekar, Soumitra ;
Zhou, Yicheng ;
Brooks, Sydney C. ;
Rosi, Nathaniel L. .
ADVANCED MATERIALS, 2020, 32 (41)
[50]   Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices [J].
Mokashi-Punekar, Soumitra ;
Merg, Andrea D. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (42) :15043-15048