Modelling and parameter estimation for discretely observed fractional iterated Ornstein-Uhlenbeck processes

被引:1
作者
Kalemkerian, Juan [1 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Montevideo, Uruguay
关键词
Fractional Brownian motion; Fractional Ornstein-Uhlenbeck process; Long memory processes;
D O I
10.1016/j.jspi.2022.11.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we present how to model an observed time series by a FOU(p) process. We will show that the FOU(p) processes can be used to model a wide range of time series varying from short range dependence to long range dependence, with performance similar to the ARMA or ARFIMA models and in several cases outperforming them. Also, we extend the theoretical results for any FOU(p) processes for the case in which the Hurst parameter is less than 1/2 and we show theoretically and by simulations that under some conditions on T and the sample size n it is possible to obtain consistent estimators of the parameters when the process is observed in a discretized and equispaced interval [0, T]. Lastly, we give a way to obtain explicit formulas for the auto-covariance function for any FOU(p) and we present an application for FOU(2) and FOU(3).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 51
页数:23
相关论文
共 21 条
[1]  
Anatia A, 2016, SORT-STAT OPER RES T, V40, P267
[2]  
Bardet J.M., 2008, NONPARAMETRIC ESTIMA
[3]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[4]  
Brockwell P.J., 2002, Introduction to time series and forecasting, Vsecond
[5]   Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package [J].
Brouste, Alexandre ;
Iacus, Stefano M. .
COMPUTATIONAL STATISTICS, 2013, 28 (04) :1529-1547
[6]  
Cheridito P, 2003, Electronic Journal of Probability, V8, P1, DOI [10.1214/EJP.v8-125, DOI 10.1214/EJP.V8-125]
[7]   INVERSE AUTOCORRELATIONS OF A TIME SERIES AND THEIR APPLICATIONS [J].
CLEVELAND, WS .
TECHNOMETRICS, 1972, 14 (02) :277-+
[8]  
GitHub, 2022, About us
[9]  
IBRAGIMOV I., 1978, Gaussian Random Processes
[10]   Quadratic variations and estimation of the local Holder index of a Gaussian process [J].
Istas, J ;
Lang, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04) :407-436