Adjusting for gene-specific covariates to improve RNA-seq analysis

被引:0
|
作者
Jeon, Hyeongseon [1 ,2 ]
Lim, Kyu-Sang [3 ]
Nguyen, Yet [4 ]
Nettleton, Dan [5 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Ohio State Univ, Pelotonia Inst Immuno Oncol, James Comprehens Canc Ctr, Columbus, OH 43210 USA
[3] Kongju Natl Univ, Dept Anim Resources Sci, Chungnam 32439, South Korea
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国食品与农业研究所;
关键词
MULTIPLE; HYPOTHESES; POWER;
D O I
10.1093/bioinformatics/btad498
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article suggests a novel positive false discovery rate (pFDR) controlling method for testing gene-specific hypotheses using a gene-specific covariate variable, such as gene length. We suppose the null probability depends on the covariate variable. In this context, we propose a rejection rule that accounts for heterogeneity among tests by using two distinct types of null probabilities. We establish a pFDR estimator for a given rejection rule by following Storey's q-value framework. A condition on a type 1 error posterior probability is provided that equivalently characterizes our rejection rule. We also present a suitable procedure for selecting a tuning parameter through cross-validation that maximizes the expected number of hypotheses declared significant. A simulation study demonstrates that our method is comparable to or better than existing methods across realistic scenarios. In data analysis, we find support for our method's premise that the null probability varies with a gene-specific covariate variable. Availability and implementation: The source code repository is publicly available at https://github.com/hsjeon1217/conditional_method.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Comparative evaluation of gene set analysis approaches for RNA-Seq data
    Rahmatallah, Yasir
    Emmert-Streib, Frank
    Glazko, Galina
    BMC BIOINFORMATICS, 2014, 15
  • [42] Gene set analysis controlling for length bias in RNA-seq experiments
    Xing Ren
    Qiang Hu
    Song Liu
    Jianmin Wang
    Jeffrey C. Miecznikowski
    BioData Mining, 10
  • [43] Comparative evaluation of gene set analysis approaches for RNA-Seq data
    Yasir Rahmatallah
    Frank Emmert-Streib
    Galina Glazko
    BMC Bioinformatics, 15
  • [44] GSAASeqSP: A Toolset for Gene Set Association Analysis of RNA-Seq Data
    Qing Xiong
    Sayan Mukherjee
    Terrence S. Furey
    Scientific Reports, 4
  • [45] Interoperable RNA-Seq analysis in the cloud
    Lachmann, Alexander
    Clarke, Daniel J. B.
    Torre, Denis
    Xie, Zhuorui
    Ma'ayan, Avi
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2020, 1863 (06):
  • [46] GSAASeqSP: A Toolset for Gene Set Association Analysis of RNA-Seq Data
    Xiong, Qing
    Mukherjee, Sayan
    Furey, Terrence S.
    SCIENTIFIC REPORTS, 2014, 4
  • [47] RNA-Seq analysis of high NaCl-induced gene expression
    Izumi, Yuichiro
    Yang, Wenjing
    Zhu, Jun
    Burg, Maurice B.
    Ferraris, Joan D.
    PHYSIOLOGICAL GENOMICS, 2015, 47 (10) : 500 - 513
  • [48] Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis
    Choi, Seung Hoan
    Labadorf, Adam T.
    Myers, Richard H.
    Lunetta, Kathryn L.
    Dupuis, Josee
    DeStefano, Anita L.
    BMC BIOINFORMATICS, 2017, 18
  • [49] Gene set analysis controlling for length bias in RNA-seq experiments
    Ren, Xing
    Hu, Qiang
    Liu, Song
    Wang, Jianmin
    Miecznikowski, Jeffrey C.
    BIODATA MINING, 2017, 10 : 1 - 18
  • [50] DEB: A web interface for RNA-seq digital gene expression analysis
    Yao, Ji Qiang
    Yu, Fahong
    BIOINFORMATION, 2011, 7 (01) : 44 - 45