Adjusting for gene-specific covariates to improve RNA-seq analysis

被引:0
|
作者
Jeon, Hyeongseon [1 ,2 ]
Lim, Kyu-Sang [3 ]
Nguyen, Yet [4 ]
Nettleton, Dan [5 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Ohio State Univ, Pelotonia Inst Immuno Oncol, James Comprehens Canc Ctr, Columbus, OH 43210 USA
[3] Kongju Natl Univ, Dept Anim Resources Sci, Chungnam 32439, South Korea
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国食品与农业研究所;
关键词
MULTIPLE; HYPOTHESES; POWER;
D O I
10.1093/bioinformatics/btad498
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article suggests a novel positive false discovery rate (pFDR) controlling method for testing gene-specific hypotheses using a gene-specific covariate variable, such as gene length. We suppose the null probability depends on the covariate variable. In this context, we propose a rejection rule that accounts for heterogeneity among tests by using two distinct types of null probabilities. We establish a pFDR estimator for a given rejection rule by following Storey's q-value framework. A condition on a type 1 error posterior probability is provided that equivalently characterizes our rejection rule. We also present a suitable procedure for selecting a tuning parameter through cross-validation that maximizes the expected number of hypotheses declared significant. A simulation study demonstrates that our method is comparable to or better than existing methods across realistic scenarios. In data analysis, we find support for our method's premise that the null probability varies with a gene-specific covariate variable. Availability and implementation: The source code repository is publicly available at https://github.com/hsjeon1217/conditional_method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Using RNA-Seq and gene-specific methods to examine salinity-induced gene expression changes in an anchialine shrimp
    Havird, J. C.
    Henry, R. P.
    Santos, S. R.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2013, 53 : E87 - E87
  • [2] RNA Sequencing (RNA-seq) Analysis Provides for Gene Signatures Specific to Intestinal Transplant Rejection
    Kang, Jiman
    Patil, Digvijay
    Oza, Kesha
    Liggett, Jedson
    Belyayev, Leonid
    Aguirre, Oswaldo
    Khan, Khalid
    Gusev, Yuriy
    Bhuvaneshwar, Krithika
    Ressom, Habtom
    Matsumoto, Cal
    Fishbein, Thomas
    Kroemer, Alexander
    TRANSPLANTATION, 2023, 107 (7S) : 8 - 8
  • [3] Identifying Relevant Covariates in RNA-seq Analysis by Pseudo-Variable Augmentation
    Nguyen, Yet
    Nettleton, Dan
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [4] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [5] Molecular barcodes improve RNA-seq
    Brooke LaFlamme
    Nature Genetics, 2014, 46 (3) : 219 - 219
  • [6] Transforming RNA-Seq Data to Improve the Performance of Prognostic Gene Signatures
    Zwiener, Isabella
    Frisch, Barbara
    Binder, Harald
    PLOS ONE, 2014, 9 (01):
  • [7] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [8] RNA-Seq analysis in MeV
    Howe, Eleanor A.
    Sinha, Raktim
    Schlauch, Daniel
    Quackenbush, John
    BIOINFORMATICS, 2011, 27 (22) : 3209 - 3210
  • [9] RNA-Seq Perspectives to Improve Clinical Diagnosis
    Marco-Puche, Guillermo
    Lois, Sergio
    Benitez, Javier
    Carlos Trivino, Juan
    FRONTIERS IN GENETICS, 2019, 10
  • [10] RNA-seq analysis for Dystrophinopathy
    Okubo, M.
    Noguchi, S.
    Hayashi, S.
    Komaki, H.
    Nishino, I.
    NEUROMUSCULAR DISORDERS, 2021, 31 : S84 - S84