CLDRNet: A Difference Refinement Network Based on Category Context Learning for Remote Sensing Image Change Detection

被引:1
|
作者
Wan, Ling [1 ,2 ]
Tian, Ye [1 ,2 ]
Kang, Wenchao [1 ,2 ]
Ma, Lei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Feature extraction; Task analysis; Remote sensing; Transformers; Deep learning; Semantics; Support vector machines; Category context learning (CCL); clustering learning (CL); difference map refinement (DMR); optical remote sensing image; change detection (CD); CHANGE VECTOR ANALYSIS; CLASSIFICATION;
D O I
10.1109/JSTARS.2023.3327340
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, change detection (CD) of optical remote sensing images has made remarkable progress through using deep learning. However, current CD deep learning methods are usually improved from the semantic segmentation models, and focus on enhancing the separability of changed and unchanged features. They ignore the essential characteristics of CD, i.e., different land cover changes exhibit different change magnitudes, resulting in limited accuracy and serious false alarms. To address this limitation, in this article, a category context learning-based difference refinement network (CLDRNet) based on our previous work is proposed. Considering the semantic content differences of heterogeneous land covers, a category context learning module is designed, which introduces a clustering learning procedure to generate an overall representation for each category, guiding the category context modeling. The clustering learning process is differentiable and can be integrated into the end-to-end trainable CD network, so it considers the semantic content differences from the CD perspective, thereby improving the CD performance. In addition, to address the magnitude differences of different land cover changes, a two-stage CD strategy is introduced. The two stages correspond to difference map learning and difference map refinement, aiming at ensuring high detection rates and revising false alarms, respectively. Finally, experimental results on three CD datasets verify the effectiveness of our CLDRNet in both visual and quantitative analysis.
引用
收藏
页码:2133 / 2148
页数:16
相关论文
共 50 条
  • [21] A Divided Spatial and Temporal Context Network for Remote Sensing Change Detection
    Shi, Nian
    Chen, Keming
    Zhou, Guangyao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4897 - 4908
  • [22] Intertemporal Interaction and Symmetric Difference Learning for Remote Sensing Image Change Captioning
    Li, Yunpeng
    Zhang, Xiangrong
    Cheng, Xina
    Chen, Puhua
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [23] SASiamNet: Self-Adaptive Siamese Network for Change Detection of Remote Sensing Image
    Long, Xianxuan
    Zhuang, Wei
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1021 - 1034
  • [24] MDFENet: A Multiscale Difference Feature Enhancement Network for Remote Sensing Change Detection
    Li, Hao
    Liu, Xiaoyong
    Li, Huihui
    Dong, Ziyang
    Xiao, Xiangling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3104 - 3115
  • [25] High-Resolution Remote Sensing Bitemporal Image Change Detection Based on Feature Interaction and Multitask Learning
    Zhao, Chunhui
    Tang, Yingjie
    Feng, Shou
    Fan, Yuanze
    Li, Wei
    Tao, Ran
    Zhang, Lifu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [26] Cross-Perception and Hierarchical Similarity Metric Network for Remote Sensing Image Change Detection
    Qu, Haicheng
    Zhang, Lijuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 13925 - 13935
  • [27] Remote Sensing Image Change Detection With Transformers
    Chen, Hao
    Qi, Zipeng
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] SFEARNet: A Network Combining Semantic Flow and Edge-Aware Refinement for Highly Efficient Remote Sensing Image Change Detection
    Li, Miao
    Ming, Dongping
    Xu, Lu
    Dong, Dehui
    Zhang, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [29] L-UNet: An LSTM Network for Remote Sensing Image Change Detection
    Sun, Shuting
    Mu, Lin
    Wang, Lizhe
    Liu, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Multielement-Feature-Based Hierarchical Context Integration Network for Remote Sensing Image Segmentation
    Yang, Yunsong
    Yuan, Genji
    Li, Jinjiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 7971 - 7985