GLOBAL STRONG SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES SYSTEM WITH POTENTIAL TEMPERATURE TRANSPORT

被引:0
|
作者
Zhai, Xiaoping [1 ]
Li, Yongsheng [2 ]
Zhou, Fujun [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
关键词
Global solutions; Compressible Navier-Stokes equations; Besov spaces; WELL-POSEDNESS; EQUATIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global strong solutions to the compressible Navier-Stokes system with potential temperature transport in Rn. Different from the Navier-Stokes-Fourier system, the pressure being a nonlinear function of the density and the potential temperature, we can not exploit the special quasi-diagonalization structure of this system to capture any dissipation of the density. Some new ideas and delicate analysis involving high or low frequency decomposition in the Besov spaces have to be made to close the energy estimates.
引用
收藏
页码:2247 / 2260
页数:14
相关论文
共 50 条
  • [1] Existence of Dissipative Solutions to the Compressible Navier-Stokes System with Potential Temperature Transport
    Lukacova-Medvid'ova, Maria
    Schoemer, Andreas
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [2] Existence of Dissipative Solutions to the Compressible Navier-Stokes System with Potential Temperature Transport
    Mária Lukáčová-Medvid’ová
    Andreas Schömer
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [3] Robustness of strong solutions to the compressible Navier-Stokes system
    Bella, Peter
    Feireisl, Eduard
    Jin, Bum Ja
    Novotny, Antonin
    MATHEMATISCHE ANNALEN, 2015, 362 (1-2) : 281 - 303
  • [4] Robustness of strong solutions to the compressible Navier-Stokes system
    Peter Bella
    Eduard Feireisl
    Bum Ja Jin
    Antonín Novotný
    Mathematische Annalen, 2015, 362 : 281 - 303
  • [5] Local strong solutions to the stochastic compressible Navier-Stokes system
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) : 313 - 345
  • [6] Conditional regularity for the compressible Navier-Stokes equations with potential temperature transport
    Lukacova-Medvid'ova, Maria
    Schoemer, Andreas
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 : 1 - 40
  • [7] Global strong solution of the pressureless Navier-Stokes/Navier-Stokes system
    Zhang, Yue
    Yu, Minyan
    Tang, Houzhi
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 1045 - 1062
  • [8] COMPRESSIBLE NAVIER-STOKES SYSTEM WITH TRANSPORT NOISE
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    Zatorska, Ewelina
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) : 4465 - 4494
  • [9] GLOBAL WEAK SOLUTIONS FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS
    SERRE, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (13): : 639 - 642
  • [10] Compressible Navier-Stokes Equations with Potential Temperature Transport: Stability of the Strong Solution and Numerical Error Estimates
    Lukacova-Medvid'ova, Maria
    Schomer, Andreas
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)