Integration of Porous High-Loading Electrode and Gel Polymer Electrolyte for High-Performance Quasi-Solid-State Battery

被引:14
作者
Nie, Lu [1 ,2 ]
Gao, Runhua [1 ,2 ]
Zhang, Mengtian [1 ,2 ]
Zhu, Yanfei [1 ,2 ]
Wu, Xinru [1 ,2 ]
Lao, Zhoujie [1 ,2 ]
Zhou, Guangmin [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
gel polymer electrolytes; high energy density; high mass loading; interfacial contact; porous channels; IONIC LIQUID; MEMBRANE; SAFE;
D O I
10.1002/aenm.202302476
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The practical applications of lithium-ion batteries (LIBs) are challenged by safety concerns using liquid electrolytes (LEs). The gel polymer electrolytes (GPEs) are considered as a promising candidate to solve this safety issue. In addition, using high-mass loading electrodes is essential to achieve high energy density. However, poor interfacial contact between electrode and electrolyte remains a challenging issue, particularly for the high-mass-loading electrode. Here, porous channels are constructed in electrodes with high active material loading using the melamine formaldehyde sponge, and then the GPE is penetrated into porous channels of electrodes through an in-situ thermal induced polymerization. The porous electrode structure with sufficient surface area improves electrolyte percolation and fast ion diffusion kinetics, which enables a uniform distribution of Li-ion flux and effectively homogenizes the local current density to realize uniform Li deposition. The half cells and anode-free full cells using the integration of porous electrodes and in-situ polymerized GPEs exhibit excellent discharge capacity and cycle stability. This integration method is applicable for fabricating batteries with high energy density and safety. The integration of porous high-loading electrodes and in-situ polymerized electrolytes is a facile and effective approach for commercially large-scale production and application in high-energy-density and safe lithium-ion batteries, which improves interfacial contact between electrode and electrolyte, provides a homogeneous distribution of Li-ion flux and local current density, and contributes to a uniform Li deposition.image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices
    Cai, Haojie
    Chen, Zhe
    Guo, Shuang
    Ma, Dongyun
    Wang, Jinmin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 256
  • [2] Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries
    Dingsheng Shao
    Xianyou Wang
    Xiaolong Li
    Kaili Luo
    Li Yang
    Lei Liu
    Hong Liu
    Journal of Solid State Electrochemistry, 2019, 23 : 2785 - 2792
  • [3] Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries
    Shao, Dingsheng
    Wang, Xianyou
    Li, Xiaolong
    Luo, Kaili
    Yang, Li
    Liu, Lei
    Liu, Hong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (10) : 2785 - 2792
  • [4] A high-performance carbon-carbon(C/C) Quasi-Solid-State Supercapacitor with Conducting Gel Electrolyte
    Wang, Dexuan
    Yu, Liangmin
    He, Benlin
    Wang, Lei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2530 - 2543
  • [5] Stretchable fluoroelastomer quasi-solid-state organic electrolyte for high-performance asymmetric flexible supercapacitors
    Wang, Xi
    Yang, Chongyang
    Wang, Gengchao
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (38) : 14839 - 14848
  • [6] A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors
    Bai, Yuge
    Yang, Chao
    Yuan, Boheng
    Li, Hongjie
    Chen, Weimeng
    Yin, Haosen
    Zhao, Bin
    Shen, Fei
    Han, Xiaogang
    JOURNAL OF ENERGY CHEMISTRY, 2023, 76 : 41 - 50
  • [7] Integration of gel polymer electrolytes with dry electrodes for quasi-solid-state batteries
    Zhang, Yue
    Gou, Bin
    Li, Yuhang
    Liao, Yaqi
    Lu, Jingshan
    Wu, Lin
    Zhang, Wei
    Xu, Henghui
    Huang, Yunhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [8] High performance quasi-solid-state supercapacitors with peanut-shell- derived porous carbon
    Yadav, Neetu
    Singh, Manoj K.
    Yadav, Nitish
    Hashmi, S. A.
    JOURNAL OF POWER SOURCES, 2018, 402 : 133 - 146
  • [9] Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries
    Choi, Hyunji
    Kim, Hyun Woo
    Kim, Jae-Kwang
    Lim, Young Jun
    Kim, Youngsik
    Ahn, Jou-Hyeon
    NANO RESEARCH, 2017, 10 (09) : 3092 - 3102
  • [10] An ultra-thin polymer electrolyte for 4.5 V high voltage LiCoO2 quasi-solid-state battery
    Ye, Xue
    Liang, Jianneng
    Hu, Jiangtao
    Wu, Dazhuan
    Li, Yongliang
    Ouyang, Xiaoping
    Zhang, Qianling
    Ren, Xiangzhong
    Liu, Jianhong
    CHEMICAL ENGINEERING JOURNAL, 2023, 455