Explainable machine learning framework to predict personalized physiological aging

被引:22
作者
Bernard, David [1 ,2 ]
Doumard, Emmanuel [1 ]
Ader, Isabelle [1 ]
Kemoun, Philippe [1 ,3 ,4 ]
Pages, Jean-Christophe [1 ,5 ]
Galinier, Anne [1 ,5 ]
Cussat-Blanc, Sylvain [2 ,6 ]
Furger, Felix [1 ]
Ferrucci, Luigi [7 ]
Aligon, Julien [2 ]
Delpierre, Cyrille [8 ]
Penicaud, Luc [1 ]
Monsarrat, Paul [1 ,3 ,4 ,6 ]
Casteilla, Louis [1 ]
机构
[1] Univ Toulouse, RESTORE Res Ctr, INSERM 1301, CNRS 5070,EFS,ENVT, Toulouse, France
[2] Univ Toulouse 1 Capitole, Inst Res Informat IRIT Toulouse, CNRS, Toulouse, France
[3] CHU Toulouse, Toulouse Inst Oral Med & Sci, Oral Med Dept, Toulouse, France
[4] CHU Toulouse, Hosp Toulouse, Toulouse Inst Oral Med & Sci, Toulouse, France
[5] CHU Toulouse, Inst Federatif Biol, Dept Med, UFR Sante, Toulouse, France
[6] Artificial & Nat Intelligence Toulouse Inst ANITI, Toulouse, France
[7] NIA, Biomed Res Ctr, NIH, Baltimore, MD 21224 USA
[8] Univ P Sabatier, CERPOP, UMR1295 Equ, Toulouse, France
关键词
artificial intelligence; biological age; Explainability; healthy aging; machine learning; personalized medicine; physiological age; Rejuvenative therapy; DEEP BIOMARKERS; AGE; DYSREGULATION; ADULTS; HEALTH; RISK;
D O I
10.1111/acel.13872
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
引用
收藏
页数:18
相关论文
共 58 条
  • [1] Personal aging markers and ageotypes revealed by deep longitudinal profiling
    Ahadi, Sara
    Zhou, Wenyu
    Schussler-Fiorenza Rose, Sophia Miryam
    Sailani, M. Reza
    Contrepois, Kevin
    Avina, Monika
    Ashland, Melanie
    Brunet, Anne
    Snyder, Michael
    [J]. NATURE MEDICINE, 2020, 26 (01) : 83 - +
  • [2] Explainability for artificial intelligence in healthcare: a multidisciplinary perspective
    Amann, Julia
    Blasimme, Alessandro
    Vayena, Effy
    Frey, Dietmar
    Madai, Vince I.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [3] Beard JR, 2015, LANCET, V385, P658, DOI [10.1016/S0140-6736(14)61461-6, 10.1016/S0140-6736(15)00516-4]
  • [4] What is Machine Learning? A Primer for the Epidemiologist
    Bi, Qifang
    Goodman, Katherine E.
    Kaminsky, Joshua
    Lessler, Justin
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (12) : 2222 - 2239
  • [5] Deep biomarkers of aging are population-dependent
    Cohen, Alan A.
    Morissette-Thomas, Vincent
    Ferrucci, Luigi
    Fried, Linda P.
    [J]. AGING-US, 2016, 8 (09): : 2253 - 2255
  • [6] Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration
    Cohen, Alan A.
    Milot, Emmanuel
    Li, Qing
    Bergeron, Patrick
    Poirier, Roxane
    Dusseault-Belanger, Francis
    Fueloep, Tamas
    Leroux, Maxime
    Legault, Veronique
    Metter, E. Jeffrey
    Fried, Linda P.
    Ferrucci, Luigi
    [J]. PLOS ONE, 2015, 10 (03):
  • [7] Cross-population validation of statistical distance as a measure of physiological dysregulation during aging
    Cohen, Alan A.
    Milot, Emmanuel
    Li, Qing
    Legault, Veronique
    Fried, Linda P.
    Ferrucci, Luigi
    [J]. EXPERIMENTAL GERONTOLOGY, 2014, 57 : 203 - 210
  • [8] A novel statistical approach shows evidence for multi-system physiological dysregulation during aging
    Cohen, Alan A.
    Milot, Emmanuel
    Yong, Jian
    Seplaki, Christopher L.
    Fueloep, Tamas
    Bandeen-Roche, Karen
    Fried, Linda P.
    [J]. MECHANISMS OF AGEING AND DEVELOPMENT, 2013, 134 (3-4) : 110 - 117
  • [9] Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
    Cole, James H.
    Poudel, Rudra P. K.
    Tsagkrasoulis, Dimosthenis
    Caan, Matthan W. A.
    Steves, Claire
    Spector, Tim D.
    Montana, Giovanni
    [J]. NEUROIMAGE, 2017, 163 : 115 - 124
  • [10] Conservation of physiological dysregulation signatures of aging across primates
    Dansereau, Gabriel
    Wey, Tina W.
    Legault, Veronique
    Brunet, Marie A.
    Kemnitz, Joseph W.
    Ferrucci, Luigi
    Cohen, Alan A.
    [J]. AGING CELL, 2019, 18 (02)