Simulation of 3D Wave Propagation in Thermoelastic Anisotropic Media

被引:0
|
作者
Carcione, Jose M. [1 ,2 ]
Wang, Enjiang [3 ]
Qadrouh, Ayman N. [4 ]
Alajmi, Mamdoh [4 ]
Ba, Jing [3 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing, Peoples R China
[2] Natl Inst Oceanog & Appl Geophys OGS, Trieste, Italy
[3] Ocean Univ China, Coll Marine Geosci, Key Lab Submarine Geosci & Prospecting Tech, MOE, Qingdao 266100, Peoples R China
[4] KACST, POB 6086, Riyadh 11442, Saudi Arabia
关键词
Thermoelasticity; Anisotropy; Thermal wave; Simulation; Fourier pseudospectral method; 86-XX; ATTENUATION;
D O I
10.1007/s10659-024-10058-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a numerical algorithm for simulation of wave propagation in anisotropic thermoelastic media, established with a generalized Fourier law of heat conduction. The wavefield is computed by using a grid method based on the Fourier differential operator and a first-order explicit Crank-Nicolson algorithm to compute the spatial derivatives and discretize the time variable (time stepping), respectively. The model predicts four propagation modes, namely, a fast compressional or (elastic) P wave, a slow thermal P diffusion/wave (the T wave), having similar characteristics to the fast and slow P waves of poroelasticity, respectively, and two shear waves, one of them coupled to the P wave and therefore affected by the heat flow. The thermal mode is diffusive for low values of the thermal conductivity and wave-like (it behaves as a wave) for high values of this property. As in the isotropic case, three velocities define the wavefront of the fast P wave, i.e, the isothermal velocity in the uncoupled case, the adiabatic velocity at low frequencies, and a higher velocity at high frequencies. The heat (thermal) wave shows an anisotropic behavior if the thermal conductivity is anisotropic, but an elastic source does not induce anisotropy in this wave if the thermal properties are isotropic.
引用
收藏
页码:501 / 523
页数:23
相关论文
共 50 条
  • [1] Wave propagation in anisotropic generalized thermoelastic media
    Sharma, M. D.
    JOURNAL OF THERMAL STRESSES, 2006, 29 (07) : 629 - 642
  • [2] Simulation of wave propagation in linear thermoelastic media
    Carcione, Jose M.
    Wang, Zhi-Wei
    Ling, Wenchang
    Salusti, Ettore
    Ba, Jing
    Fu, Li-Yun
    GEOPHYSICS, 2019, 84 (01) : T1 - T11
  • [3] Simulation of thermoelastic wave propagation in 3-D multilayered half-space media
    Yang, Bo
    Li, Zhengbo
    Zeng, Ling
    Chen, Xiaofei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 232 (02) : 1408 - 1426
  • [4] Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity‡
    Lisitsa, Vadim
    Vishnevskiy, Dmitriy
    GEOPHYSICAL PROSPECTING, 2010, 58 (04) : 619 - 635
  • [5] Numerical simulation of wave propagation in anisotropic media
    Petrov, I. B.
    Favorskaya, A. V.
    Vasyukov, A. V.
    Ermakov, A. S.
    Beklemysheva, K. A.
    Kazakov, A. O.
    Novikov, A. V.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 778 - 780
  • [6] Numerical simulation of wave propagation in anisotropic media
    I. B. Petrov
    A. V. Favorskaya
    A. V. Vasyukov
    A. S. Ermakov
    K. A. Beklemysheva
    A. O. Kazakov
    A. V. Novikov
    Doklady Mathematics, 2014, 90 : 778 - 780
  • [7] Numerical Simulation of Wave Propagation in 3D Elastic Media with Viscoelastic Formations
    Vishnevsky, D. M.
    Solovyev, S. A.
    Lisitsa, V. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (08) : 1603 - 1614
  • [8] Numerical Simulation of Wave Propagation in 3D Elastic Media with Viscoelastic Formations
    D. M. Vishnevsky
    S. A. Solovyev
    V. V. Lisitsa
    Lobachevskii Journal of Mathematics, 2020, 41 : 1603 - 1614
  • [9] THERMOELASTIC WAVE PROPAGATION IN ANISOTROPIC LAYERED MEDIA - A SPECTRAL ELEMENT FORMULATION
    Chakraborty, A.
    Gopalakrishnan, S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2004, 1 (03) : 535 - 567
  • [10] Simulation of seismic wave propagation in 3D heterogeneous media: a parallel computing approach
    Agreste, Santa
    Ricciardello, Angela
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2011, 2 (01)