The Euler-Bernoulli Limit of Thin Brittle Linearized Elastic Beams

被引:0
|
作者
Ginster, Janusz [1 ]
Gladbach, Peter [2 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Dimension reduction; Brittle fracture; Gamma-Convergence; Euler-Bernoulli beam; NONLINEAR MEMBRANE ENERGY; VARIATIONAL DERIVATION; GAMMA-LIMIT; MODEL; FRACTURE; BLAKE; FILMS;
D O I
10.1007/s10659-023-10040-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the linear brittle Griffith energy on a thin rectangle Gamma-converges after rescaling to the linear one-dimensional brittle Euler-Bernoulli beam energy.In contrast to the existing literature, we prove a corresponding sharp compactness result, namely a suitable weak convergence after subtraction of piecewise rigid motions with the number of jumps bounded by the energy.
引用
收藏
页码:125 / 155
页数:31
相关论文
共 50 条
  • [41] Bending Solutions of FGM Reddy-Bickford Beams in Terms of Those of the Homogenous Euler-Bernoulli Beams
    Xia, You-Ming
    Li, Shi-Rong
    Wan, Ze-Qing
    ACTA MECHANICA SOLIDA SINICA, 2019, 32 (04) : 499 - 516
  • [42] RESONANT GREEN'S FUNCTION FOR EULER-BERNOULLI BEAMS BY MEANS OF THE FREDHOLM ALTERNATIVE THEOREM
    Hozhabrossadati, Seyed Mojtaba
    Sani, Ahmad Aftabi
    Mofid, Masood
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (03) : 55 - 67
  • [43] Nondeterministic dynamic stability assessment of Euler-Bernoulli beams using Chebyshev surrogate model
    Gao, Kang
    Gao, Wei
    Wu, Binhua
    Song, Chongmin
    APPLIED MATHEMATICAL MODELLING, 2019, 66 : 1 - 25
  • [44] Bending of Euler-Bernoulli beams using Eringen's integral formulation: A paradox resolved
    Fernandez-Saez, J.
    Zaera, R.
    Loya, J. A.
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 99 : 107 - 116
  • [45] Moving load identification on Euler-Bernoulli beams with viscoelastic boundary conditions by Tikhonov regularization
    Qiao, Guandong
    Rahmatalla, Salam
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (08) : 1070 - 1107
  • [46] Exponential stability of uniform Euler-Bernoulli beams with non-collocated boundary controllers
    Chen, Yun Lan
    Xu, Gen Qi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 851 - 867
  • [47] Formulation of the Green's functions stiffness method for Euler-Bernoulli beams on elastic Winkler foundation with semi-rigid connections
    Molina-Villegas, Juan Camilo
    Ortega, Jorge Eliecer Ballesteros
    Cardona, David Ruiz
    ENGINEERING STRUCTURES, 2022, 266
  • [48] Tensile fracture analysis of a thin Euler-Bernoulli beam and the transition to the voussoir model
    Newman, D.
    Hutchinson, A. J.
    Mason, D. P.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 102 : 78 - 88
  • [49] Application of iteration perturbation method and Hamiltonian approach for nonlinear vibration of Euler-Bernoulli beams
    Ahmadi, Morteza
    Hashemi, Gholamreza
    Asghari, Ali
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2014, 11 (06): : 1049 - 1062
  • [50] A generally modified cuckoo optimization algorithm for crack detection in cantilever Euler-Bernoulli beams
    Moezi, Seyed Alireza
    Zakeri, Ehsan
    Zare, Amin
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2018, 52 : 227 - 241