The Euler-Bernoulli Limit of Thin Brittle Linearized Elastic Beams

被引:0
|
作者
Ginster, Janusz [1 ]
Gladbach, Peter [2 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Dimension reduction; Brittle fracture; Gamma-Convergence; Euler-Bernoulli beam; NONLINEAR MEMBRANE ENERGY; VARIATIONAL DERIVATION; GAMMA-LIMIT; MODEL; FRACTURE; BLAKE; FILMS;
D O I
10.1007/s10659-023-10040-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the linear brittle Griffith energy on a thin rectangle Gamma-converges after rescaling to the linear one-dimensional brittle Euler-Bernoulli beam energy.In contrast to the existing literature, we prove a corresponding sharp compactness result, namely a suitable weak convergence after subtraction of piecewise rigid motions with the number of jumps bounded by the energy.
引用
收藏
页码:125 / 155
页数:31
相关论文
共 50 条
  • [31] Mechanical Properties Analysis of Bilayer Euler-Bernoulli Beams Based on Elasticity Theory
    Zhang, Z.
    Zhang, C.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (08): : 1662 - 1667
  • [32] THE EFFECT OF QUINTIC NONLINEARITY ON THE INVESTIGATION OF TRANSVERSELY VIBRATING BUCKLED EULER-BERNOULLI BEAMS
    Sedighi, Hamid M.
    Reza, Arash
    Zare, Jamal
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2013, 51 (04) : 959 - 968
  • [33] Coupled Bending and Axial Vibrations of Axially Functionally Graded Euler-Bernoulli Beams
    Tomovic, Aleksandar
    Salinic, Slavisa
    Obradovic, Aleksandar
    Zoric, Nemanja
    Mitrovic, Zoran
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 2987 - 3004
  • [34] Dynamic analysis of multi-cracked Euler-Bernoulli beams with gradient elasticity
    Dona, Marco
    Palmeri, Alessandro
    Lombardo, Mariateresa
    COMPUTERS & STRUCTURES, 2015, 161 : 64 - 76
  • [35] A State-Based Peridynamic Formulation for Functionally Graded Euler-Bernoulli Beams
    Yang, Zhenghao
    Oterkus, Erkan
    Oterkus, Selda
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 124 (02): : 527 - 544
  • [36] Study of nonlinear vibration of Euler-Bernoulli beams by using analytical approximate techniques
    Bagheri, S.
    Nikkar, A.
    Ghaffarzadeh, H.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2014, 11 (01): : 157 - 168
  • [37] A numerical method for solving fractional-order viscoelastic Euler-Bernoulli beams
    Yu, Chunxiao
    Zhang, Jie
    Chen, Yiming
    Feng, Yujing
    Yang, Aimin
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 275 - 279
  • [38] Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler-Bernoulli and shear-deformable beams
    Yaghoubi, Saba Tahaei
    Balobanov, Viacheslav
    Mousavi, S. Mahmoud
    Niiranen, Jarkko
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2018, 69 : 113 - 123
  • [39] Fractal Continuum Calculus of Functions on Euler-Bernoulli Beam
    Samayoa, Didier
    Kryvko, Andriy
    Velazquez, Gelasio
    Mollinedo, Helvio
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [40] A Neural network approach to damage detection in Euler-Bernoulli beams subjected to external forces
    Almeida, Juliana
    Alonso, Hugo
    Rocha, Paula
    2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2013, : 100 - 103