Experimental Investigation of Thermal Runaway Propagation in a Lithium-Ion Battery Pack: Effects of State of Charge and Coolant Flow Rate

被引:1
作者
Wu, Wanyi [1 ,2 ,3 ,4 ]
Ke, Qiaomin [2 ,3 ,4 ]
Guo, Jian [1 ,2 ,3 ,4 ]
Wang, Yiwei [2 ,3 ,4 ]
Qiu, Yishu [2 ,3 ,4 ]
Cen, Jiwen [1 ,2 ,3 ,4 ]
Jiang, Fangming [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Sch Energy Sci & Engn, Guangzhou 510640, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Lab Adv Energy Syst, Guangzhou 510640, Peoples R China
[3] CAS Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[4] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 11期
关键词
lithium-ion battery; thermal runaway propagation; thermal management; liquid cooling; state of charge; MANAGEMENT-SYSTEM; RECENT PROGRESS; ISSUES; PERFORMANCE; MODULE;
D O I
10.3390/batteries9110552
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs) are widely used as power sources for electric vehicles due to their various advantages, including high energy density and low self-discharge rate. However, the safety challenges associated with LIB thermal runaway (TR) still need to be addressed. In the present study, the effects of the battery SOC value and coolant flow rate on the TR behavior in a LIB pack are comprehensively investigated. The battery pack consists of 10 18650-type LIBs applied with the serpentine channel liquid-cooling thermal management system (TMS). The TR tests for various SOC values (50%, 75% and 100%) and coolant flow rates (0 L/h, 32 L/h, 64 L/h and 96 L/h) are analyzed. The retarding effect of the TMS on TR propagation is found to be correlated with both the coolant flow rate and the battery SOC value, and a larger coolant flow rate and lower SOC generally result in fewer TR batteries. Furthermore, the TR propagation rate, evaluated by the time interval of TR occurrence between the adjacent batteries, increases with the battery SOC. The battery pack with 100% SOC shows more rapid TR propagation, which can be completed in just a few seconds, in contrast to several minutes for 50% and 75% SOC cases. In addition, the impact of the battery SOC and coolant flow rate on the maximum temperature of the TR battery is also examined, and no determined association is observed between them. However, it is found that the upstream batteries (closer to the external heater) show a slightly higher maximum temperature than the downstream ones, indicating a weak association between the TR battery maximum temperature and the external heating duration or the battery temperature at which the TR starts to take place.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system
    Wang, Gongquan
    Gao, Wei
    He, Xu
    Peng, Rongqi
    Zhang, Yue
    Dai, Xinyi
    Ping, Ping
    Kong, Depeng
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [32] Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling
    Feng, Liyuan
    Zhou, Shuo
    Li, Yancheng
    Wang, Yao
    Zhao, Qiang
    Luo, Chunhui
    Wang, Guixin
    Yan, Kangping
    JOURNAL OF ENERGY STORAGE, 2018, 16 : 84 - 92
  • [33] Modeling initiation and propagation of thermal runaway in pouch Li-ion battery cells: Effects of heating rate and state-of-charge
    Zeng, Dong
    Mohaddes, Danyal
    Gagnon, Lauren
    Wang, Yi
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [34] Influence of inhomogeneous state of charge distributions on thermal runaway propagation in lithium-ion batteries
    Theiler, Michael
    Baumann, Alexander
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [35] Experimentally exploring thermal runaway propagation and prevention in the prismatic lithium-ion battery with different connections
    Zhou, Zhizuan
    Zhou, Xiaodong
    Wang, Boxuan
    Liew, K. M.
    Yang, Lizhong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 164 : 517 - 527
  • [36] The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries
    Ke, Qiaomin
    Li, Xin
    Guo, Jian
    Cao, Wenjiong
    Wang, Yiwei
    Jiang, Fangming
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [37] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [38] First Experimental Assessment of All-Solid-State Battery Thermal Runaway Propagation in a Battery Pack
    Darmet, Natacha
    Charbonnel, Juliette
    Reytier, Magali
    Broche, Ludovic
    Vincent, Remi
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4365 - 4375
  • [39] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [40] Investigation of the Impact of Flow of Vented Gas on Propagation of Thermal Runaway in a Li-Ion Battery Pack
    Mishra, Dhananjay
    Shah, Krishna
    Jain, Ankur
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (06)