Experimental Investigation of Thermal Runaway Propagation in a Lithium-Ion Battery Pack: Effects of State of Charge and Coolant Flow Rate

被引:1
|
作者
Wu, Wanyi [1 ,2 ,3 ,4 ]
Ke, Qiaomin [2 ,3 ,4 ]
Guo, Jian [1 ,2 ,3 ,4 ]
Wang, Yiwei [2 ,3 ,4 ]
Qiu, Yishu [2 ,3 ,4 ]
Cen, Jiwen [1 ,2 ,3 ,4 ]
Jiang, Fangming [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Sch Energy Sci & Engn, Guangzhou 510640, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Lab Adv Energy Syst, Guangzhou 510640, Peoples R China
[3] CAS Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[4] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 11期
关键词
lithium-ion battery; thermal runaway propagation; thermal management; liquid cooling; state of charge; MANAGEMENT-SYSTEM; RECENT PROGRESS; ISSUES; PERFORMANCE; MODULE;
D O I
10.3390/batteries9110552
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs) are widely used as power sources for electric vehicles due to their various advantages, including high energy density and low self-discharge rate. However, the safety challenges associated with LIB thermal runaway (TR) still need to be addressed. In the present study, the effects of the battery SOC value and coolant flow rate on the TR behavior in a LIB pack are comprehensively investigated. The battery pack consists of 10 18650-type LIBs applied with the serpentine channel liquid-cooling thermal management system (TMS). The TR tests for various SOC values (50%, 75% and 100%) and coolant flow rates (0 L/h, 32 L/h, 64 L/h and 96 L/h) are analyzed. The retarding effect of the TMS on TR propagation is found to be correlated with both the coolant flow rate and the battery SOC value, and a larger coolant flow rate and lower SOC generally result in fewer TR batteries. Furthermore, the TR propagation rate, evaluated by the time interval of TR occurrence between the adjacent batteries, increases with the battery SOC. The battery pack with 100% SOC shows more rapid TR propagation, which can be completed in just a few seconds, in contrast to several minutes for 50% and 75% SOC cases. In addition, the impact of the battery SOC and coolant flow rate on the maximum temperature of the TR battery is also examined, and no determined association is observed between them. However, it is found that the upstream batteries (closer to the external heater) show a slightly higher maximum temperature than the downstream ones, indicating a weak association between the TR battery maximum temperature and the external heating duration or the battery temperature at which the TR starts to take place.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack
    Peng, Xiongbin
    Cui, Xujian
    Liao, Xiangping
    Garg, Akhil
    ENERGIES, 2020, 13 (11)
  • [22] Experimental investigation on thermal runaway propagation in the lithium ion battery modules under charging condition
    Hu, Jian
    Liu, Tong
    Tang, Qi
    Wang, Xishi
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [23] Inhibition of Thermal Runaway Propagation in Lithium-Ion Battery Pack by Minichannel Cold Plates and Insulation Layers
    Liu, Xinyu
    Zhou, Zhifu
    Wu, Wei-Tao
    Lv, Jizu
    Hu, Chengzhi
    Gao, Linsong
    Li, Yang
    Li, Yubai
    Song, Yongchen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [24] Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge
    Zhang, Wencan
    Ouyang, Nan
    Yin, Xiuxing
    Li, Xingyao
    Wu, Weixiong
    Huang, Liansheng
    APPLIED ENERGY, 2022, 323
  • [25] Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge
    Zhang, Wencan
    Ouyang, Nan
    Yin, Xiuxing
    Li, Xingyao
    Wu, Weixiong
    Huang, Liansheng
    APPLIED ENERGY, 2022, 323
  • [26] An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
    Wang, Huaibin
    Xu, Hui
    Zhao, Zhenyang
    Wang, Qinzheng
    Jin, Changyong
    Li, Yanliang
    Sheng, Jun
    Li, Kuijie
    Du, Zhiming
    Xu, Chengshan
    Feng, Xuning
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [27] Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model
    Xu, Chengshan
    Wang, Huaibin
    Jiang, Fachao
    Feng, Xuning
    Lu, Languang
    Jin, Changyong
    Zhang, Fangshu
    Huang, Wensheng
    Zhang, Mengqi
    Ouyang, Minggao
    ENERGY, 2023, 268
  • [28] Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium-ion battery pack
    Chang, Guofeng
    Cui, Xian
    Li, Yuyang
    Ji, Yunkang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6383 - 6395
  • [29] An experimental investigation on thermal runaway features of lithium-ion battery modules under tunnel scenarios
    Ouyang, Dongxu
    Liu, Xiaojun
    Liu, Bo
    Wang, Zhirong
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 164
  • [30] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171