Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces

被引:1
作者
Maluleka, Rose [1 ,2 ]
Ugwunnadi, Godwin Chidi [1 ,3 ]
Aphane, Maggie [1 ]
机构
[1] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
[2] Tshwane Univ Technol, Dept Math & Stat, Staatsartillerie Rd, ZA-0183 Pretoria, South Africa
[3] Univ Eswatini, Fac Sci & Engn, Dept Math, Private Bag 4,M201, Kwaluseni, Eswatini
关键词
Bregman distance; quasi-Bregman nonexpansive mapping; fixed point problem; subgradient and extragrdient method; inertial term; pseudomonotone operator; variational inequality problem; SUBGRADIENT EXTRAGRADIENT METHOD; STRONG-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; EXISTENCE; OPERATORS;
D O I
10.3390/axioms12100960
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new iterative method that combines the inertial subgradient extragradient method and the modified Mann method for solving the pseudomonotone variational inequality problem and the fixed point of quasi-Bregman nonexpansive mapping in p-uniformly convex and uniformly smooth real Banach spaces. Under some standard assumptions imposed on cost operators, we prove a strong convergence theorem for our proposed method. Finally, we perform numerical experiments to validate the efficiency of our proposed method.
引用
收藏
页数:21
相关论文
共 42 条
[1]  
Alber YI., 1996, THEORY APPL NONLINEA, P15
[2]  
Ali B, 2011, NONLINEAR ANAL-HYBRI, V5, P492, DOI 10.1016/j.nahs.2010.10.007
[3]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[4]  
Bregman L., 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[5]   On Mann-type accelerated projection methods for pseudomonotone variational inequalities and common fixed points in Banach spaces [J].
Ceng, Lu-Chuan ;
Liou, Yeong-Cheng ;
Yin, Tzu-Chien .
AIMS MATHEMATICS, 2023, 8 (09) :21138-21160
[6]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[7]   Zero Point Problem of Accretive Operators in Banach Spaces [J].
Chang, Shih-Sen ;
Wen, Ching-Feng ;
Yao, Jen-Chih .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) :105-118
[8]  
Cioranescu I., 1990, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, DOI [10.1007/978-94-009-212-4, DOI 10.1007/978-94-009-212-4]
[9]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54
[10]   Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings [J].
Duong Viet Thong ;
Shehu, Yekini ;
Iyiola, Olaniyi S. .
NUMERICAL ALGORITHMS, 2020, 84 (02) :795-823