Using the l1-norm for Image-based tomographic reconstruction

被引:0
作者
Calvino, Jose J. [2 ]
Fernandez, Elena [1 ]
Lopez-Haro, Miguel [2 ]
Munoz-Ocana, Juan M. [1 ]
Rodriguez-Chia, Antonio M. [1 ]
机构
[1] Univ Cadiz, Dept Estadist & Invest Operat, Campus Univ, Cadiz, Spain
[2] Univ Cadiz, Dept Ciencia Mat & Ingn Met & Quim Inorgan, Campus Univ, Cadiz, Spain
关键词
Image reconstruction; Electron tomography; Linear programming; Lagrangian relaxation; ELECTRON TOMOGRAPHY; ALGORITHM; ART;
D O I
10.1016/j.eswa.2023.120848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an l(1)-norm model based on Total Variation Minimization for tomographic reconstruction. The reconstructions produced by the proposed model are more accurate than those obtained with classical reconstruction models based on the l(2)-norm. This model can be linearized and solved by linear programming techniques. Furthermore, the complementary slackness conditions can be exploited to reduce the dimension of the resulting formulation by removing unnecessary variables and constraints. Since the efficacy of the reduced formulation strongly depends on the quality of the dual-multipliers used when applying the reduction method, Lagrangian relaxation is used to obtain near-optimal multipliers. This allows solving larger instances in an efficient way.
引用
收藏
页数:16
相关论文
共 37 条
[1]   SIMULTANEOUS ALGEBRAIC RECONSTRUCTION TECHNIQUE (SART) - A SUPERIOR IMPLEMENTATION OF THE ART ALGORITHM [J].
ANDERSEN, AH ;
KAK, AC .
ULTRASONIC IMAGING, 1984, 6 (01) :81-94
[2]   An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks [J].
Araujo, Jose Denes Lima ;
da Cruz, Luana Batista ;
Ferreira, Jonnison Lima ;
Neto, Otilio Paulo da Silva ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
[3]  
Avizo, 2019, US GUID AV SOFTW 201
[4]   On Lagrangian support vector regression [J].
Balasundaram, S. ;
Kapil .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) :8784-8792
[5]   The volume algorithm: producing primal solutions with a subgradient method [J].
Barahona, F ;
Anbil, R .
MATHEMATICAL PROGRAMMING, 2000, 87 (03) :385-399
[6]  
Bertsekas D. P., 1999, Nonlinear Programming
[7]  
Bertsimas Dimitris, 1997, Introduction to Linear Optimization, V1st
[8]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]   Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media [J].
Durst, Julien ;
Lopez-Haro, Miguel ;
Dubau, Laetitia ;
Chatenet, Marian ;
Soldo-Olivier, Yvonne ;
Guetaz, Laure ;
Bayle-Guillemaud, Pascale ;
Maillard, Frederic .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (03) :434-439