A review of standardized high-throughput cardiovascular phenotyping with a link to metabolism in mice

被引:1
|
作者
Lindovsky, Jiri [1 ]
Nichtova, Zuzana [1 ]
Dragano, Nathalia R. V. [2 ]
Reguera, David Pajuelo [1 ]
Prochazka, Jan [1 ]
Fuchs, Helmut [2 ]
Marschall, Susan [2 ]
Gailus-Durner, Valerie [2 ]
Sedlacek, Radislav [1 ]
de Angelis, Martin Hrabe [2 ]
Rozman, Jan [1 ,3 ]
Spielmann, Nadine [2 ]
机构
[1] Czech Acad Sci, Inst Mol Genet, Czech Ctr Phenogen, Prumyslova 595, Vestec 25250, Czech Republic
[2] German Res Ctr Environm Hlth, Inst Expt Genet, Helmholtz Ctr Munich, German Mouse Clin, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[3] Univ Luxembourg, Luxembourg Ctr Syst Biomed, Esch Sur Alzette, Luxembourg
关键词
ENERGY-METABOLISM; KNOCKOUT MICE; MOUSE; HEART; MUTATIONS; GENES; GENOME; ECHOCARDIOGRAPHY; IDENTIFICATION; GENERATION;
D O I
10.1007/s00335-023-09997-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [31] High-Throughput Biochemical Phenotyping for Plants
    Menard, Guillaume
    Biais, Benoit
    Prodhomme, Duyen
    Ballias, Patricia
    Petit, Johann
    Just, Daniel
    Rothan, Christophe
    Rolin, Dominique
    Gibon, Yves
    METABOLOMICS COMING OF AGE WITH ITS TECHNOLOGICAL DIVERSITY, 2013, 67 : 407 - 439
  • [32] Phenotype-driven genetic approaches in mice - High-throughput phenotyping for discovering new models of cardiovascular disease
    Hoit, BD
    Nadeau, JH
    TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (02) : 82 - 89
  • [33] High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
    Duffy, Grant
    Cheng, Paul P.
    Yuan, Neal
    He, Bryan
    Kwan, Alan C.
    Shun-Shin, Matthew J.
    Alexander, Kevin M.
    Ebinger, Joseph
    Lungren, Matthew P.
    Rader, Florian
    Liang, David H.
    Schnittger, Ingela
    Ashley, Euan A.
    Zou, James Y.
    Patel, Jignesh
    Witteles, Ronald
    Cheng, Susan
    Ouyang, David
    JAMA CARDIOLOGY, 2022, 7 (04) : 386 - 395
  • [34] A short review of RGB sensor applications for accessible high-throughput phenotyping
    Kim J.Y.
    Chung Y.S.
    Journal of Crop Science and Biotechnology, 2021, 24 (5) : 495 - 499
  • [35] A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots
    Xu, Rui
    Li, Changying
    PLANT PHENOMICS, 2022, 2022
  • [36] Review: High-throughput phenotyping to enhance the use of crop genetic resources
    Rebetzke, G. J.
    Jimenez-Berni, J.
    Fischer, R. A.
    Deery, D. M.
    Smith, D. J.
    PLANT SCIENCE, 2019, 282 : 40 - 48
  • [37] High-throughput proximal ground crop phenotyping systems - A comprehensive review
    Rui, Z.
    Zhang, Z.
    Zhang, M.
    Azizi, A.
    Igathinathane, C.
    Cen, H.
    Vougioukas, S.
    Li, H.
    Zhang, J.
    Jiang, Y.
    Jiao, X.
    Wang, M.
    Ampatzidis, Y.
    Oladele, O. I.
    Ghasemi-Varnamkhasti, M.
    Radi, Radi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [38] Quantitative X-ray microradiography for high-throughput phenotyping of osteoarthritis in mice
    Waung, J. A.
    Maynard, S. A.
    Gopal, S.
    Gogakos, A.
    Logan, J. G.
    Williams, G. R.
    Bassett, J. H. D.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) : 1396 - 1400
  • [39] High-Throughput Phenotyping: Application in Maize Breeding
    Resende, Ewerton Lelys
    Bruzi, Adriano Teodoro
    Cardoso, Everton da Silva
    Carneiro, Vinicius Quintao
    Pereira de Souza, Vitorio Antonio
    Frois Correa Barros, Paulo Henrique
    Pereira, Raphael Rodrigues
    AGRIENGINEERING, 2024, 6 (02): : 1078 - 1092
  • [40] High-throughput Phenotyping of Inflorescence Type in Hydrangea
    Alexander, Lisa
    Wu, Xingbo
    HORTSCIENCE, 2020, 55 (09) : S68 - S68