A review of standardized high-throughput cardiovascular phenotyping with a link to metabolism in mice

被引:1
|
作者
Lindovsky, Jiri [1 ]
Nichtova, Zuzana [1 ]
Dragano, Nathalia R. V. [2 ]
Reguera, David Pajuelo [1 ]
Prochazka, Jan [1 ]
Fuchs, Helmut [2 ]
Marschall, Susan [2 ]
Gailus-Durner, Valerie [2 ]
Sedlacek, Radislav [1 ]
de Angelis, Martin Hrabe [2 ]
Rozman, Jan [1 ,3 ]
Spielmann, Nadine [2 ]
机构
[1] Czech Acad Sci, Inst Mol Genet, Czech Ctr Phenogen, Prumyslova 595, Vestec 25250, Czech Republic
[2] German Res Ctr Environm Hlth, Inst Expt Genet, Helmholtz Ctr Munich, German Mouse Clin, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[3] Univ Luxembourg, Luxembourg Ctr Syst Biomed, Esch Sur Alzette, Luxembourg
关键词
ENERGY-METABOLISM; KNOCKOUT MICE; MOUSE; HEART; MUTATIONS; GENES; GENOME; ECHOCARDIOGRAPHY; IDENTIFICATION; GENERATION;
D O I
10.1007/s00335-023-09997-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] A review of standardized high-throughput cardiovascular phenotyping with a link to metabolism in mice
    Jiri Lindovsky
    Zuzana Nichtova
    Nathalia R. V. Dragano
    David Pajuelo Reguera
    Jan Prochazka
    Helmut Fuchs
    Susan Marschall
    Valerie Gailus-Durner
    Radislav Sedlacek
    Martin Hrabě de Angelis
    Jan Rozman
    Nadine Spielmann
    Mammalian Genome, 2023, 34 (2) : 107 - 122
  • [2] High-throughput phenotyping in cotton: a review
    Pabuayon, Irish Lorraine B.
    Sun Yazhou
    Guo Wenxuan
    Ritchie, Glen L.
    JOURNAL OF COTTON RESEARCH, 2019, 2 (1)
  • [3] High-throughput phenotyping in cotton:a review
    PABUAYON Irish Lorraine B.
    SUN Yazhou
    GUO Wenxuan
    RITCHIE Glen L.
    Journal of Cotton Research, 2019, 2 (03) : 174 - 182
  • [4] High-throughput phenotyping in cotton: a review
    Irish Lorraine B. PABUAYON
    Yazhou SUN
    Wenxuan GUO
    Glen L. RITCHIE
    Journal of Cotton Research, 2
  • [5] High-throughput gene knockouts and phenotyping in mice
    Moore, MW
    ANIMAL MODELS OF T CELL-MEDIATED SKIN DISEASES, 2005, 50 : 27 - 44
  • [6] High-throughput phenotyping
    Natalie de Souza
    Nature Methods, 2010, 7 (1) : 36 - 36
  • [7] High-throughput phenotyping
    Gehan, Malia A.
    Kellogg, Elizabeth A.
    AMERICAN JOURNAL OF BOTANY, 2017, 104 (04) : 505 - 508
  • [8] High-throughput phenotyping
    de Souza, Natalie
    NATURE METHODS, 2010, 7 (01) : 36 - 36
  • [9] Novel method for high-throughput phenotyping of sleep in mice
    Pack, Allan I.
    Galante, Raymond J.
    Maislin, Greg
    Cater, Jacqueline
    Metaxas, Dimitris
    Lu, Shan
    Zhang, Lin
    Von Smith, Randy
    Kay, Timothy
    Lian, Jie
    Svenson, Karen
    Peters, Luanne L.
    PHYSIOLOGICAL GENOMICS, 2007, 28 (02) : 232 - 238
  • [10] Imaging technologies for plant high-throughput phenotyping:a review
    Yong ZHANG
    Naiqian ZHANG
    FrontiersofAgriculturalScienceandEngineering, 2018, 5 (04) : 406 - 419