DOLG-NeXt: Convolutional neural network with deep orthogonal fusion of local and global features for biomedical image segmentation

被引:7
作者
Ahmed, Md. Rayhan [1 ]
Fahim, Asif Iqbal [1 ]
Islam, A. K. M. Muzahidul [1 ]
Islam, Salekul [1 ]
Shatabda, Swakkhar [1 ]
机构
[1] United Int Univ, Dept Comp Sci & Engn, Plot-2, United City, Madani Ave, Dhaka 1212, Bangladesh
关键词
Multi-scale information aggregation; Biomedical image segmentation; ConvNeXt; Deep orthogonal fusion of local and global features; Squeeze and excitation networks;
D O I
10.1016/j.neucom.2023.126362
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biomedical image segmentation (BMIS) is an essential yet challenging task for the visual analysis of biomedical images. Modern deep learning-based architectures, such as UNet, UNet-based variants, Transformers-based networks, and their combinations, have achieved reasonable success in BMIS. However, they still face certain shortcomings in extracting fine-grained features. They are also limited by scenarios where the modeling of local and global feature representations needs to be optimized cor-rectly for spatial dependency in the decoding process, which can result in duplicate data utilization throughout the architecture. Besides, Transformer-based models lack inductive bias in addition to the complexity of the models. As a result, it can perform unsatisfactorily in a lesser biomedical image setting. This paper proposes a novel encode-decoder architecture named DOLG-NeXt, incorporating three major enhancements over the UNet-based variants. Firstly, we integrate squeeze and excitation network (SE -Net)-driven ConvNeXt stages as encoder backbone for effective feature extraction. Secondly, we employ a deep orthogonal fusion of local and global (DOLG) features module in the decoder to retrieve fine-grained contextual feature representations. Finally, we construct a SE-Net-like lightweight attention net-work alongside the DOLG module to provide refined target-relevant channel-based feature maps for decoding. To objectively validate the proposed DOLG-NeXt method, we perform extensive quantitative and qualitative analysis on four benchmark datasets from different biomedical image modalities: colono-scopy, electron microscopy, fluorescence, and retinal fundus imaging. DOLG-NeXt achieves a dice coeffi-cient score of 95.10% in CVC-ClinicDB, 95.80% in ISBI 2012, 94.77% in 2018 Data Science Bowl, and 84.88% in the DRIVE dataset, respectively. The experimental analysis shows that DOLG-NeXt outperforms several state-of-the-art models for BMIS tasks.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 63 条
[1]   DoubleU-NetPlus: a novel attention and context-guided dual U-Net with multi-scale residual feature fusion network for semantic segmentation of medical images [J].
Ahmed, Md. Rayhan ;
Ashrafi, Adnan Ferdous ;
Ahmed, Raihan Uddin ;
Shatabda, Swakkhar ;
Islam, A. K. M. Muzahidul ;
Islam, Salekul .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19) :14379-14401
[2]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[3]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[4]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[5]  
Cao H., 2021, arXiv
[6]   An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy [J].
Cardona, Albert ;
Saalfeld, Stephan ;
Preibisch, Stephan ;
Schmid, Benjamin ;
Cheng, Anchi ;
Pulokas, Jim ;
Tomancak, Pavel ;
Hartenstein, Volker .
PLOS BIOLOGY, 2010, 8 (10)
[7]  
Chen J, 2021, arXiv
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26