Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian

被引:3
作者
Pucci, Patrizia [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via L Vanvitelli 1, I-06123 Perugia, Italy
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2023年 / 68卷 / 01期
关键词
Eigenvalue problems; (p; q)-Laplacian; multiple solutions; P-LAPLACIAN;
D O I
10.24193/subbmath.2023.1.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to a subject that Professor Csaba Varga suggested during his frequent visits to the University of Perugia and in my regular stays at the "Babes-Bolyai" University. More specifically, continuing the work started in [7] jointly with Professor Varga, here we establish the existence of two nontrivial (weak) solutions of some one parameter eigenvalue (p, q)-Laplacian problems under homogeneous Dirichlet boundary conditions in bounded domains of R-N.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 1977, Nonlinearity and Functional Analysis
[2]   A nondifferentiable extension of a theorem of Pucci and Serrin and applications [J].
Arcoya, David ;
Carmona, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :683-700
[3]   Full description of the eigenvalue set of the Steklov (p, q)-Laplacian [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 :1-16
[4]   Multiplicity of positive solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (03)
[5]  
Brezis H., 2010, Functional Analysis, Sobolev Spaces and Partial Differential Equations
[6]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[7]   Multiple solutions for an eigenvalue problem involving p-Laplacian type operators [J].
Colasuonno, Francesca ;
Pucci, Patrizia ;
Varga, Csaba .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) :4496-4512
[8]   Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations [J].
Colasuonno, Francesca ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :5962-5974
[9]  
Cuesta M, 2001, ELECTRON J DIFFER EQ
[10]  
Demengel F., 1998, Adv. Differ. Equ., V3, P533