Interface Engineering via Regulating Electrolyte for High-Voltage Layered Oxide Cathodes-Based Li-Ion Batteries

被引:30
作者
Cheng, Fangyuan [1 ]
Xu, Jia [1 ]
Wei, Peng [1 ]
Cheng, Zexiao [1 ]
Liao, Mengyi [1 ]
Sun, Shixiong [1 ]
Xu, Yue [1 ]
Li, Qing [1 ]
Fang, Chun [1 ]
Lin, Yaqing [1 ]
Han, Jiantao [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
graphite anodes; high-voltage electrolytes; interface engineering; Li-rich; Ni-rich cathodes; lithium-ion batteries; PERFORMANCE;
D O I
10.1002/advs.202206714
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-rich and Ni-rich layered oxides as next-generation high-energy cathodes for lithium-ion batteries (LIBs) possess the catalytic surface, which leads to intensive interfacial reactions, transition metal ion dissolution, gas generation, and ultimately hinders their applications at 4.7 V. Here, robust inorganic/organic/inorganic-rich architecture cathode-electrolyte interphase (CEI) and inorganic/organic-rich architecture anode-electrolyte interphase (AEI) with F-, B-, and P-rich inorganic components through modulating the frontier molecular orbital energy levels of lithium salts are constructed. A ternary fluorinated lithium salts electrolyte (TLE) is formulated by mixing 0.5 m lithium difluoro(oxalato)borate, 0.2 m lithium difluorophosphate with 0.3 m lithium hexafluorophosphate. The obtained robust interphase effectively suppresses the adverse electrolyte oxidation and transition metal dissolution, significantly reduces the chemical attacks to AEI. Li-rich Li1.2Mn0.58Ni0.08Co0.14O2 and Ni-rich LiNi0.8Co0.1Mn0.1O2 in TLE exhibit high-capacity retention of 83.3% after 200 cycles and 83.3% after 1000 cycles under 4.7 V, respectively. Moreover, TLE also shows excellent performances at 45 degrees C, demonstrating this inorganic rich interface successfully inhibits the more aggressive interface chemistry at high voltage and high temperature. This work suggests that the composition and structure of the electrode interface can be regulated by modulating the frontier molecular orbital energy levels of electrolyte components, so as to ensure the required performance of LIBs.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells [J].
Cappetto, A. ;
Cao, W. J. ;
Luo, J. F. ;
Hagen, M. ;
Adams, D. ;
Shelikeri, A. ;
Xu, K. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2017, 359 :205-214
[2]   Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries [J].
Cha, Jiho ;
Han, Jung-Gu ;
Hwang, Jaeseong ;
Cho, Jaephil ;
Choi, Nam-Soon .
JOURNAL OF POWER SOURCES, 2017, 357 :97-106
[3]   Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion [J].
Chen, Yupeng ;
Meng, Jingxin ;
Gu, Zhen ;
Wan, Xizi ;
Jiang, Lei ;
Wang, Shutao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (05)
[4]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[5]   Insights into the Dual Role of Lithium Difluoro(oxalato)borate Additive in Improving the Electrochemical Performance of NMC811∥Graphite Cells [J].
Dong, Qingyu ;
Guo, Feng ;
Cheng, Zhenjie ;
Mao, Yayun ;
Huang, Rong ;
Li, Fangsen ;
Dong, Houcai ;
Zhang, Qingyong ;
Li, Wei ;
Chen, Hui ;
Luo, Zhaojun ;
Shen, Yanbin ;
Wu, Xiaodong ;
Chen, Liwei .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :695-704
[6]   Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes [J].
Dong, Ruiqi ;
Zheng, Lumin ;
Bai, Ying ;
Ni, Qiao ;
Li, Yu ;
Wu, Feng ;
Ren, Haixia ;
Wu, Chuan .
ADVANCED MATERIALS, 2021, 33 (36)
[7]   Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives [J].
Eshetu, Gebrekidan Gebresilassie ;
Elia, Giuseppe Antonio ;
Armand, Michel ;
Forsyth, Maria ;
Komaba, Shinichi ;
Rojo, Teofilo ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[8]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566
[9]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[10]   Mixed Lithium Salts Electrolyte Improves the High-Temperature Performance of Nickel-Rich Based Lithium-Ion Batteries [J].
Feng, Dongjin ;
Chen, Shimou ;
Wang, Rumeng ;
Chen, Tianhua ;
Gu, Shijie ;
Su, Jielong ;
Dong, Tao ;
Liu, Yuwen .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)