Neural Networks Based Optimal Tracking Control of a Delta Robot With Unknown Dynamics

被引:4
作者
Gholami, Akram [1 ]
Sun, Jian-Qiao [1 ]
Ehsani, Reza [1 ]
机构
[1] Univ Calif Merced, Sch Engn, Dept Mech Engn, 5200 N Lake Rd, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
Data-driven control; dynamics estimation; neural networks; optimal control; APPROXIMATE OPTIMAL-CONTROL; LEARNING ALGORITHM; NONLINEAR-SYSTEMS;
D O I
10.1007/s12555-022-0745-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a data-driven optimal tracking control scheme for unknown general nonlinear systems using neural networks. First, a new neural networks structure is established to reconstruct the unknown system dynamics of the form x(t) = f (x(t))+ g(x(t))u(t). Two networks in parallel are designed to approximate the functions f (x) and g(x). Then the obtained data-driven models are used to build the optimal tracking control. The developed control consists of two parts, the feed-forward control and the optimal feedback control. The optimal feedback control is developed by approximating the solution of the Hamilton-Jacobi-Bellman equation with neural networks. Unlike other studies, the Hamilton-Jacobi-Bellman solution is found by estimating the value function derivative using neural networks. Finally, the proposed control scheme is tested on a delta robot. Two trajectory tracking examples are provided to verify the effectiveness of the proposed optimal control approach.
引用
收藏
页码:3382 / 3390
页数:9
相关论文
共 32 条
[1]   A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems [J].
Bhasin, S. ;
Kamalapurkar, R. ;
Johnson, M. ;
Vamvoudakis, K. G. ;
Lewis, F. L. ;
Dixon, W. E. .
AUTOMATICA, 2013, 49 (01) :82-92
[2]  
Cohen MH, 2020, IEEE DECIS CONTR P, P2062, DOI [10.1109/CDC42340.2020.9303896, 10.1109/cdc42340.2020.9303896]
[3]  
Csji BC., 2001, Fac Sci Etvs Lornd Univ Hungary, V24, P7
[4]   Neural-Network-Based Output-Feedback Control Under Round-Robin Scheduling Protocols [J].
Ding, Derui ;
Wang, Zidong ;
Han, Qing-Long ;
Wei, Guoliang .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) :2372-2384
[5]   Adaptive Optimal Tracking Control Via Actor-Critic-Identifier Based Adaptive Dynamic Programming for Permanent-Magnet Synchronous Motor Drive System [J].
El-Sousy, Fayez F. M. ;
Amin, Mahmoud M. ;
Al-Durra, Ahmed .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (06) :6577-6591
[6]   Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances [J].
Fan, Quan-Yong ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) :165-177
[7]   Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm [J].
Huang, Yuzhu ;
Liu, Derong .
NEUROCOMPUTING, 2014, 125 :46-56
[8]   Online adaptive approximate optimal tracking control with simplified dual approximation structure for continuous-time unknown nonlinear systems [J].
Na, Jing ;
Herrmann, Guido .
IEEE/CAA Journal of Automatica Sinica, 2014, 1 (04) :412-422
[9]  
Kingma D. P., 2015, P 3 INT C LEARN REPR
[10]   Optimal and Autonomous Control Using Reinforcement Learning: A Survey [J].
Kiumarsi, Bahare ;
Vamvoudakis, Kyriakos G. ;
Modares, Hamidreza ;
Lewis, Frank L. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) :2042-2062