Transferable empirical pseudopotenials from machine learning

被引:3
作者
Kim, Rokyeon [1 ]
Son, Young -Woo [1 ]
机构
[1] Korea Inst Adv Study, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; DIAMOND;
D O I
10.1103/PhysRevB.109.045153
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning is used to generate empirical pseudopotentials that characterize the local screened interactions in the Kohn -Sham Hamiltonian. Our approach incorporates momentum -range -separated rotation -covariant descriptors to capture crystal symmetries as well as crucial directional information of bonds, thus realizing accurate descriptions of anisotropic solids. Trained empirical potentials are shown to be versatile and transferable such that the calculated energy bands and wave functions without cumbersome self -consistency reproduce conventional ab initio results even for semiconductors with defects, thus fostering faster and faithful data -driven material researches.
引用
收藏
页数:10
相关论文
共 69 条
  • [1] Abadi M., 2015, TENSORFLOW LARGE SCA
  • [2] Anderson B, 2019, ADV NEUR IN, V32
  • [3] [Anonymous], ELECT STRUCTURE OPTI
  • [4] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [5] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [6] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [7] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Batzner, Simon
    Musaelian, Albert
    Sun, Lixin
    Geiger, Mario
    Mailoa, Jonathan P.
    Kornbluth, Mordechai
    Molinari, Nicola
    Smidt, Tess E.
    Kozinsky, Boris
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [9] Learning scheme to predict atomic forces and accelerate materials simulations
    Botu, V.
    Ramprasad, R.
    [J]. PHYSICAL REVIEW B, 2015, 92 (09)
  • [10] REFLECTANCE AND PHOTOEMISSION FROM SI
    BRUST, D
    PHILLIPS, JC
    COHEN, ML
    [J]. PHYSICAL REVIEW LETTERS, 1962, 9 (09) : 389 - &