A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis

被引:25
|
作者
Tian, Jilun [1 ]
Zhang, Jiusi [1 ]
Jiang, Yuchen [1 ]
Wu, Shimeng [1 ]
Luo, Hao [1 ]
Yin, Shen [2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Dept Control Sci & Engn, Harbin 150000, Peoples R China
[2] Norwegian Univ Sci & Technol, Fac Engn, Dept Mech & Ind Engn, N-7033 Trondheim, Norway
关键词
Source-free domain adaptation; Fault diagnosis; Self-training; Neural networks; Manifold mixup augmentation;
D O I
10.1016/j.ress.2023.109891
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Domain adaptation has been widely applied in data-driven fault diagnosis tasks to address the domain shift problem between source and target data. However, conventional domain adaptation methods require both domains to be known, which is not always feasible due to privacy concerns and big data transmission. To overcome this limitation, a dedicated method called source-free domain adaptation (SFDA) has been developed to ensure reliable performance without relying on source data during target model adaptation. SFDA can achieve accurate classification tasks under domain shift problems and source data-free scenarios. We propose a generalized source model with manifold Mixup data augmentation and label smoothing techniques to avoid overfitting during the source model training. Based on this model, a novel self-training framework is proposed to implement the domain adaptation task and achieve accurate prediction performance. The experimental results from three real-world datasets demonstrate the effectiveness of the proposed approach.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep Domain Adaptation Approach Using an Improved Parallel Residual Network for Cross-Domain Bearing Fault Diagnosis
    Huang, Jiezhou
    SHOCK AND VIBRATION, 2024, 2024
  • [22] Uncertainty Estimation Pseudo-Label-Guided Source-Free Domain Adaptation for Cross-Domain Remaining Useful Life Prediction in IIoT
    Chen, Zhuohang
    Chen, Jinglong
    Pan, Tongyang
    Xie, Jingsong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 236 - 249
  • [23] Uncertainty-Guided Source-Free Domain Adaptation
    Roy, Subhankar
    Trapp, Martin
    Pilzer, Andrea
    Kannala, Juho
    Sebe, Nicu
    Ricci, Elisa
    Solin, Arno
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 537 - 555
  • [24] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207
  • [25] Source-free domain adaptation with Class Prototype Discovery
    Zhou, Lihua
    Li, Nianxin
    Ye, Mao
    Zhu, Xiatian
    Tang, Song
    PATTERN RECOGNITION, 2023, 145
  • [26] Source-Free Implicit Semantic Augmentation for Domain Adaptation
    Zhang, Zheyuan
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 17 - 31
  • [27] Source-Free Domain Adaptation for Optical Music Recognition
    Rosello, Adrian
    Fuentes-Martinez, Eliseo
    Alfaro-Contreras, Maria
    Rizo, David
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT VI, 2024, 14809 : 3 - 19
  • [28] Exploring Relational Knowledge for Source-Free Domain Adaptation
    Ma, You
    Chai, Lin
    Tu, Shi
    Wang, Qingling
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1825 - 1839
  • [29] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [30] Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers
    Wang, Huaqing
    Xu, Zhitao
    Tong, Xingwei
    Song, Liuyang
    SENSORS, 2023, 23 (04)