A self-knowledge distillation-driven CNN-LSTM model for predicting disease outcomes using longitudinal microbiome data

被引:5
作者
Fung, Daryl L. X. [1 ]
Li, Xu [2 ]
Leung, Carson K. [1 ]
Hu, Pingzhao [1 ,2 ,3 ,4 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
[2] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON M5T 3M7, Canada
[3] Univ Manitoba, Dept Biochem & Med Genet, Winnipeg, MB R3E 0J9, Canada
[4] Western Univ, Dept Biochem, London, ON N6A 5C1, Canada
来源
BIOINFORMATICS ADVANCES | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1093/bioadv/vbad059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Human microbiome is complex and highly dynamic in nature. Dynamic patterns of the microbiome can capture more information than single point inference as it contains the temporal changes information. However, dynamic information of the human microbiome can be hard to be captured due to the complexity of obtaining the longitudinal data with a large volume of missing data that in conjunction with heterogeneity may provide a challenge for the data analysis.Results We propose using an efficient hybrid deep learning architecture convolutional neural network-long short-term memory, which combines with self-knowledge distillation to create highly accurate models to analyze the longitudinal microbiome profiles to predict disease outcomes. Using our proposed models, we analyzed the datasets from Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) study and DIABIMMUNE study. We showed the significant improvement in the area under the receiver operating characteristic curve scores, achieving 0.889 and 0.798 on PROTECT study and DIABIMMUNE study, respectively, compared with state-of-the-art temporal deep learning models. Our findings provide an effective artificial intelligence-based tool to predict disease outcomes using longitudinal microbiome profiles from collected patients.Availability and implementation The data and source code can be accessed at https://github.com/darylfung96/UC-disease-TL.
引用
收藏
页数:10
相关论文
共 29 条
  • [11] The Mythos of Model Interpretability
    Lipton, Zachary C.
    [J]. COMMUNICATIONS OF THE ACM, 2018, 61 (10) : 36 - 43
  • [12] Lundberg SM, 2017, ADV NEUR IN, V30
  • [13] McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, 10.48550/arXiv.1802.03426, 10.21105/joss.00861, DOI 10.21105/JOSS.00861]
  • [14] Visualizing structure and transitions in high-dimensional biological data
    Moon, Kevin R.
    van Dijk, David
    Wang, Zheng
    Gigante, Scott
    Burkhardt, Daniel B.
    Chen, William S.
    Yim, Kristina
    van den Elzen, Antonia
    Hirn, Matthew J.
    Coifman, Ronald R.
    Ivanova, Natalia B.
    Wolf, Guy
    Krishnaswamy, Smita
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1482 - +
  • [15] Population Genomics Approaches for Genetic Characterization of SARS-CoV-2 Lineages
    Mostefai, Fatima
    Gamache, Isabel
    N'Guessan, Arnaud
    Pelletier, Justin
    Huang, Jessie
    Murall, Carmen Lia
    Pesaranghader, Ahmad
    Gaonac'h-Lovejoy, Vanda
    Hamelin, David J.
    Poujol, Raphael
    Grenier, Jean-Christophe
    Smith, Martin
    Caron, Etienne
    Craig, Morgan
    Wolf, Guy
    Krishnaswamy, Smita
    Shapiro, B. Jesse
    Hussin, Julie G.
    [J]. FRONTIERS IN MEDICINE, 2022, 9
  • [16] Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool
    O'Toole, Aine
    Scher, Emily
    Underwood, Anthony
    Jackson, Ben
    Hill, Verity
    McCrone, John T.
    Colquhoun, Rachel
    Ruis, Chris
    Abu-Dahab, Khalil
    Taylor, Ben
    Yeats, Corin
    du Plessis, Louis
    Maloney, Daniel
    Medd, Nathan
    Attwood, Stephen W.
    Aanensen, David M.
    Holmes, Edward C.
    Pybus, Oliver G.
    Rambaut, Andrew
    [J]. VIRUS EVOLUTION, 2021, 7 (02)
  • [17] Plumb Gregory, 2020, Proc Mach Learn Res, V119, P7762
  • [18] A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
    Rambaut, Andrew
    Holmes, Edward C.
    O'Toole, Aine
    Hill, Verity
    McCrone, John T.
    Ruis, Christopher
    du Plessis, Louis
    Pybus, Oliver G.
    [J]. NATURE MICROBIOLOGY, 2020, 5 (11) : 1403 - 1407
  • [19] "Why Should I Trust You?" Explaining the Predictions of Any Classifier
    Ribeiro, Marco Tulio
    Singh, Sameer
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1135 - 1144
  • [20] SIMONY AN K, 2014, DEEP INSIDE CONVOLUT