The Local Langlands Conjecture for G2

被引:2
作者
Gan, Wee Teck [1 ]
Savin, Gordan [2 ]
机构
[1] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
来源
FORUM OF MATHEMATICS PI | 2023年 / 11卷
基金
美国国家科学基金会;
关键词
11F27; 11F70; 22E50; SIEGEL-WEIL FORMULA; REPRESENTATIONS; COMPATIBILITY;
D O I
10.1017/fmp.2023.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local Langlands conjecture for the exceptional group G(2)(F) where F is a non-archimedean local field of characteristic zero.
引用
收藏
页数:42
相关论文
共 50 条
  • [41] Classification of the reducible Verma modules over the Jacobi algebra G2
    Aizawa, N.
    Dobrev, V. K.
    Doi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (47)
  • [42] Admissible Embeddings of L-Tori and the Essentially Tame Local Langlands Correspondence
    Tam, Kam-Fai
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (06) : 1695 - 1775
  • [43] On the Kottwitz conjecture for local shtuka spaces
    Hansen, David
    Kaletha, Tasho
    Weinstein, Jared
    FORUM OF MATHEMATICS PI, 2022, 10
  • [44] Deligne-Lusztig constructions for division algebras and the local Langlands correspondence, II
    Chan, Charlotte
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3175 - 3216
  • [45] A Local Version of Szpiro's Conjecture
    Bennett, Michael A.
    Yazdani, Soroosh
    EXPERIMENTAL MATHEMATICS, 2012, 21 (02) : 103 - 116
  • [46] A proof of Lusztig's conjectures for affine type G2 with arbitrary parameters
    Guilhot, Jeremie
    Parkinson, James
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (05) : 1188 - 1244
  • [47] The Characters of a Sylow p-Subgroup of the Group G2(pn), p≠2, 3
    M. Taoufik Karkar
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 135 - 142
  • [48] GEOMETRIC STRUCTURE IN THE PRINCIPAL SERIES OF THE p- ADIC GROUP G2
    Aubert, Anne-Marie
    Baum, Paul
    Plymen, Roger
    REPRESENTATION THEORY, 2011, 15 : 126 - 169
  • [49] Algebraic cycles and functorial lifts from G2 to PGSp6
    Cauchi, Antonio
    Lemma, Francesco
    Jacinto, Joaquin Rodrigues
    ALGEBRA & NUMBER THEORY, 2025, 19 (03) : 551 - 616
  • [50] A new realization of the Langlands correspondence for PGL(2, F)
    Adrian, Moshe
    JOURNAL OF NUMBER THEORY, 2013, 133 (02) : 446 - 474