Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms

被引:14
作者
Xie, Manling [1 ]
Pallegar, Praveen N. [1 ,2 ]
Parusel, Sebastian [1 ]
Nguyen, Aivi T. [3 ]
Wu, Long-Jun [1 ,4 ,5 ]
机构
[1] Mayo Clin, Dept Neurol, 200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Grad Sch Biomed Sci, Rochester, MN USA
[3] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA
[4] Mayo Clin, Dept Neurosci, Jacksonville, FL 55902 USA
[5] Mayo Clin, Dept Immunol, Rochester, MN 55902 USA
关键词
MOTOR-NEURON DEGENERATION; SELECTIVE MOTONEURON VULNERABILITY; POTASSIUM CHANNEL EXPRESSION; ENDOPLASMIC-RETICULUM STRESS; MICROGLIAL P2Y12 RECEPTORS; TRANSGENIC MOUSE MODEL; SPINAL-CORD; GENE-EXPRESSION; NMDA RECEPTORS; FUNCTIONAL CONNECTIVITY;
D O I
10.1186/s13024-023-00665-w
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
引用
收藏
页数:21
相关论文
共 221 条
[1]   Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients [J].
Abe, Koji ;
Itoyama, Yasuto ;
Sobue, Gen ;
Tsuji, Shoji ;
Aoki, Masashi ;
Doyu, Manabu ;
Hamada, Chikuma ;
Kondo, Kazuoki ;
Yoneoka, Takatomo ;
Akimoto, Makoto ;
Yoshino, Hiide .
AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2014, 15 (7-8) :610-617
[2]   Regulation of microglia by neuromodulators: Modulations in major and minor modes [J].
Albertini, G. ;
Etienne, F. ;
Roumier, A. .
NEUROSCIENCE LETTERS, 2020, 733
[3]   THE ROLE OF CALCIUM-BINDING PROTEINS IN SELECTIVE MOTONEURON VULNERABILITY IN AMYOTROPHIC-LATERAL-SCLEROSIS [J].
ALEXIANU, ME ;
HO, BK ;
MOHAMED, AH ;
LABELLA, V ;
SMITH, RG ;
APPEL, SH .
ANNALS OF NEUROLOGY, 1994, 36 (06) :846-858
[4]   Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis [J].
Allen, Scott P. ;
Hall, Benjamin ;
Castelli, Lydia M. ;
Francis, Laura ;
Woof, Ryan ;
Siskos, Alexandros P. ;
Kouloura, Eirini ;
Gray, Elizabeth ;
Thompson, Alexander G. ;
Talbot, Kevin ;
Higginbottom, Adrian ;
Myszczynska, Monika ;
Allen, Chloe F. ;
Stopford, Matthew J. ;
Hemingway, Jordan ;
Bauer, Claudia S. ;
Webster, Christopher P. ;
De Vos, Kurt J. ;
Turner, Martin R. ;
Keun, Hector C. ;
Hautbergue, Guillaume M. ;
Ferraiuolo, Laura ;
Shaw, Pamela J. .
BRAIN, 2019, 142 :586-605
[5]  
Andreadou E, 2008, IN VIVO, V22, P137
[6]   Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration [J].
Andres-Benito, Pol ;
Moreno, Jesus ;
Aso, Ester ;
Povedano, Monica ;
Ferrer, Isidro .
AGING-US, 2017, 9 (03) :823-851
[7]   Node of Ranvier length as a potential regulator of myelinated axon conduction speed [J].
Arancibia-Carcamo, I. Lorena ;
Ford, Marc C. ;
Cossell, Lee ;
Ishida, Kinji ;
Tohyama, Koujiro ;
Attwell, David .
ELIFE, 2017, 6
[8]   Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex [J].
Aronica, Eleonora ;
Baas, Frank ;
Lyer, Anand ;
ten Asbroek, Anneloor L. M. A. ;
Morello, Giovanna ;
Cavallaro, Sebastiano .
NEUROBIOLOGY OF DISEASE, 2015, 74 :359-376
[9]   Axon Initial Segment-Associated Microglia [J].
Baalman, Kelli ;
Marin, Miguel A. ;
Ho, Tammy Szu-Yu ;
Godoy, Marlesa ;
Cherian, Leela ;
Robertson, Claudia ;
Rasband, Matthew N. .
JOURNAL OF NEUROSCIENCE, 2015, 35 (05) :2283-2292
[10]   Negative feedback control of neuronal activity by microglia [J].
Badimon, Ana ;
Strasburger, Hayley J. ;
Ayata, Pinar ;
Chen, Xinhong ;
Nair, Aditya ;
Ikegami, Ako ;
Hwang, Philip ;
Chan, Andrew T. ;
Graves, Steven M. ;
Uweru, Joseph O. ;
Ledderose, Carola ;
Kutlu, Munir Gunes ;
Wheeler, Michael A. ;
Kahan, Anat ;
Ishikawa, Masago ;
Wang, Ying-Chih ;
Loh, Yong-Hwee E. ;
Jiang, Jean X. ;
Surmeier, D. James ;
Robson, Simon C. ;
Junger, Wolfgang G. ;
Sebra, Robert ;
Calipari, Erin S. ;
Kenny, Paul J. ;
Eyo, Ukpong B. ;
Colonna, Marco ;
Quintana, Francisco J. ;
Wake, Hiroaki ;
Gradinaru, Viviana ;
Schaefer, Anne .
NATURE, 2020, 586 (7829) :417-+