Exploring the Heat Shock Transcription Factor (HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses

被引:6
|
作者
Jiang, Dongzhu [1 ,2 ]
Xia, Maoqin [1 ]
Xing, Haitao [1 ]
Gong, Min [3 ]
Jiang, Yajun [1 ]
Liu, Huanfang [4 ]
Li, Hong-Lei [1 ]
机构
[1] Chongqing Univ Arts & Sci, Coll Landscape Architecture & Life Sci, Chongqing 402160, Peoples R China
[2] Yangtze Univ, Coll Hort & Gardening, Jingzhou 433200, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Biol & Food Engn, Chongqing 404100, Peoples R China
[4] Chinese Acad Sci, Key Lab Plant Resources Conservat & Sustainable Ut, South China Bot Garden, Guangzhou 510650, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 16期
关键词
ginger; HSF gene family; abiotic stress; expression patterns; TOLERANCE; ARABIDOPSIS; TOMATO; OVEREXPRESSION; IDENTIFICATION; DUPLICATION; DOMAIN; GRAPE;
D O I
10.3390/plants12162999
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice (Oryza sativa L.)
    Li, Jiaming
    Zhang, Minghui
    Sun, Jian
    Mao, Xinrui
    Wang, Jing
    Wang, Jingguo
    Liu, Hualong
    Zheng, Hongliang
    Zhen, Zhen
    Zhao, Hongwei
    Zou, Detang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (02)
  • [42] Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Medicago truncatula
    Liu, Xiqiang
    Zhang, Han
    Ma, Lin
    Wang, Zan
    Wang, Kun
    GENES, 2020, 11 (11) : 1 - 18
  • [43] Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Li, Yahui
    Zhu, Mengdi
    Cui, Rongjing
    Gao, Jiong
    Shu, Yingjie
    Lu, Xiaomin
    Zhang, Huijun
    Zhang, Kaijing
    GENES, 2023, 14 (11)
  • [44] Genome-Wide Identification and Expression Analysis of Eggplant DIR Gene Family in Response to Biotic and Abiotic Stresses
    Zhang, Kaijing
    Xing, Wujun
    Sheng, Suao
    Yang, Dekun
    Zhen, Fengxian
    Jiang, Haikun
    Yan, Congsheng
    Jia, Li
    HORTICULTURAE, 2022, 8 (08)
  • [45] Genome-Wide Identification and Characterization of Soybean GmLOR Gene Family and Expression Analysis in Response to Abiotic Stresses
    Fang, Yisheng
    Cao, Dong
    Yang, Hongli
    Guo, Wei
    Ouyang, Wenqi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Li, Xia
    Chen, Limiao
    Zhou, Xinan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [46] Genome-Wide Identification of the Heat Shock Transcription Factor Gene Family in Rosemary (Salvia rosmarinus)
    Cui, Weitong
    Xu, Zongle
    Kong, Yuhua
    Yang, Lin
    Dou, Hao
    Zhang, Dangquan
    Li, Mingwan
    Chen, Yuanyuan
    Ding, Shen
    Yang, Chaochen
    Lai, Yong
    HORTICULTURAE, 2024, 10 (12)
  • [47] Genome-wide identification of the heat shock transcription factor gene family in two kiwifruit species
    Tu, Jing
    Abid, Muhammad
    Luo, Juan
    Zhang, Yi
    Yang, Endian
    Cai, Xinxia
    Gao, Puxin
    Huang, Hongwen
    Wang, Zupeng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [48] Genome-Wide Identification, Characterization, and Expression Profiling of the Legume BZR Transcription Factor Gene Family
    Li, Yueying
    He, Liangliang
    Li, Jing
    Chen, Jianghua
    Liu, Changning
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [49] Genome-Wide Identification and Expression Profiling of the BZR Transcription Factor Gene Family in Nicotiana benthamiana
    Chen, Xuwei
    Wu, Xinyang
    Qiu, Shiyou
    Zheng, Hongying
    Lu, Yuwen
    Peng, Jiejun
    Wu, Guanwei
    Chen, Jianping
    Rao, Shaofei
    Yan, Fei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [50] Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa
    Li, Xiaohong
    Wang, Xiaotong
    Ma, Xuxia
    Cai, Wenqi
    Liu, Yaling
    Song, Wenxue
    Fu, Bingzhe
    Li, Shuxia
    FRONTIERS IN PLANT SCIENCE, 2023, 14