The lysosomal LAMTOR / Ragulator complex is essential for nutrient homeostasis in brown adipose tissue

被引:5
作者
Liebscher, Gudrun [1 ]
Vujic, Nemanja [2 ]
Schreiber, Renate [3 ]
Heine, Markus [4 ]
Krebiehl, Caroline [1 ]
Duta-Mare, Madalina [2 ]
Lamberti, Giorgia [1 ]
de Smet, Cedric H. [1 ]
Hess, Michael W. [5 ]
Eichmann, Thomas O. [3 ]
Hoelzl, Sarah [1 ]
Scheja, Ludger [4 ]
Heeren, Joerg [4 ]
Kratky, Dagmar [2 ,6 ]
Huber, Lukas A. [1 ]
机构
[1] Med Univ Innsbruck, Div Cell Biol, Bioctr, Innrain 80-82, A-6020 Innsbruck, Austria
[2] Med Univ Graz, Gottfried Schatz Res Ctr, Mol Biol & Biochem, Neue Stiftingtalstr 6, A-8010 Graz, Austria
[3] Karl Franzens Univ Graz, Inst Mol Biosci, Heinrichstr 31, A-8010 Graz, Austria
[4] Univ Med Ctr Hamburg Eppendorf, Dept Biochem & Mol Cell Biol, Martinistr 52, D-20246 Hamburg, Germany
[5] Med Univ Innsbruck, Inst Histol & Embryol, Mullerstr 59, A-6020 Innsbruck, Austria
[6] BioTechMed Graz, Mozartgasse 12, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
LAMTOR; Ragulator; mTORC1; 2; AKT; Brown adipose tissue; Lysosome; COLD-INDUCED THERMOGENESIS; RAG GTPASES; INSULIN; PROTEIN; MTOR; AKT; PHOSPHORYLATION; ADIPOCYTES; TARGET; IDENTIFICATION;
D O I
10.1016/j.molmet.2023.101705
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. Methods: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 & DEG;C, room temperature and 5 & DEG;C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. Results: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. Conclusions: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3KmTORC2-AKT signaling downstream of the insulin receptor. & COPY; 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:16
相关论文
共 40 条
[1]   The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice [J].
Beaudry, Jacqueline L. ;
Kaur, Kiran Deep ;
Varin, Elodie M. ;
Baggio, Laurie L. ;
Cao, Xiemin ;
Mulvihill, Erin E. ;
Stem, Jennifer H. ;
Campbell, Jonathan E. ;
Scherer, Phillip E. ;
Drucker, Daniel J. .
MOLECULAR METABOLISM, 2019, 22 :37-48
[2]   Mig-6 is essential for glucose homeostasis and thermogenesis in brown adipose tissue [J].
Choung, Sorim ;
Kim, Ji Min ;
Joung, Kyong Hye ;
Kim, Hyun Jin ;
Kang, Seon Mee ;
Jeong, Jae-Wook ;
Ku, Bon Jeong .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 572 :92-97
[3]   The role and importance of brown adipose tissue in energy homeostasis [J].
Cypess, Aaron M. ;
Kahn, C. Ronald .
CURRENT OPINION IN PEDIATRICS, 2010, 22 (04) :478-484
[4]   The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II [J].
Nakatani, Takeshi ;
Tsujimoto, Kohei ;
Park, JeongHoon ;
Jo, Tatsunori ;
Kimura, Tetsuya ;
Hayama, Yoshitomo ;
Konaka, Hachiro ;
Morita, Takayoshi ;
Kato, Yasuhiro ;
Nishide, Masayuki ;
Koyama, Shyohei ;
Nada, Shigeyuki ;
Okada, Masato ;
Takamatsu, Hyota ;
Kumanogoh, Atsushi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Allicin Regulates Energy Homeostasis through Brown Adipose Tissue [J].
Zhang, Chuanhai ;
He, Xiaoyun ;
Sheng, Yao ;
Xu, Jia ;
Yang, Cui ;
Zheng, Shujuan ;
Liu, Junyu ;
Li, Haoyu ;
Ge, Jianbing ;
Yang, Minglan ;
Zhai, Baiqiang ;
Xu, Wentao ;
Luo, Yunbo ;
Huang, Kunlun .
ISCIENCE, 2020, 23 (05)
[6]   Lysosomal acid lipase regulates fatty acid channeling in brown adipose tissue to maintain thermogenesis [J].
Duta-Mare, Madalina ;
Sachdev, Vinay ;
Leopold, Christina ;
Kolb, Dagmar ;
Vujic, Nemanja ;
Korbelius, Melanie ;
Hofer, Dina C. ;
Xia, Wenmin ;
Huber, Katharina ;
Auer, Martina ;
Gottschalk, Benjamin ;
Magnes, Christoph ;
Graier, Wolfgang F. ;
Prokesch, Andreas ;
Radovic, Branislav ;
Bogner-Strauss, Juliane G. ;
Kratky, Dagmar .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2018, 1863 (04) :467-478
[7]   Intracellular glycolysis in brown adipose tissue is essential for optogenetically induced nonshivering thermogenesis in mice [J].
Jeong, Jae Hoon ;
Chang, Ji Suk ;
Jo, Young-Hwan .
SCIENTIFIC REPORTS, 2018, 8
[8]   BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis [J].
Qian, Shu-Wen ;
Tang, Yan ;
Li, Xi ;
Liu, Yuan ;
Zhang, You-You ;
Huang, Hai-Yan ;
Xue, Rui-Dan ;
Yu, Hao-Yong ;
Guo, Liang ;
Gao, Hui-Di ;
Liu, Yan ;
Sun, Xia ;
Li, Yi-Ming ;
Jia, Wei-Ping ;
Tang, Qi-Qun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (09) :E798-E807
[9]   Inosine: novel activator of brown adipose tissue and energy homeostasis [J].
Pfeifer, Alexander ;
Mikhael, Mickel ;
Niemann, Birte .
TRENDS IN CELL BIOLOGY, 2024, 34 (01) :72-82
[10]   Brown adipose tissue regulates glucose homeostasis and insulin sensitivity [J].
Stanford, Kristin I. ;
Middelbeek, Roeland J. W. ;
Townsend, Kristy L. ;
An, Ding ;
Nygaard, Eva B. ;
Hitchcox, Kristen M. ;
Markan, Kathleen R. ;
Nakano, Kazuhiro ;
Hirshman, Michael F. ;
Tseng, Yu-Hua ;
Goodyear, Laurie J. .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (01) :215-223