Multi-Stage Salient Object Detection in 360° Omnidirectional Image Using Complementary Object-Level Semantic Information

被引:4
作者
Chen, Gang [1 ]
Shao, Feng [1 ]
Chai, Xiongli [1 ]
Jiang, Qiuping [1 ]
Ho, Yo-Sung [2 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Gwangju Inst Sci & Technol, Sch Informat & Commun, Gwangju 500712, South Korea
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 01期
基金
浙江省自然科学基金;
关键词
360 degrees omnidirectional image; object-level semantic image; salient object detection; virtual reality; NETWORK; PREDICTION; MODEL;
D O I
10.1109/TETCI.2023.3259433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, salient object detection (SOD) for 2D images has been extensively studied. However, due to the complexity of scene and the existence of geometric distortions, research on 360 degrees SOD is still lacking with respect to the wide field-of-view. In this paper, we explore a multi-stage solution for SOD of 360 degrees omnidirectional images, which considers the effects of RGB image and the complementary object-level semantic (OLS) information in locating the objects. Specifically, to effectively concatenate two types of features, we propose a novel Multi-level Feature Fusion and Progressive Aggregation Network (MFFPANet) for accurately detecting the salient objects in 360 degrees omnidirectional images, which is mainly composed of a dynamic complementary feature fusion (DCFF) module and a progressive multi-scale feature aggregation (PMFA) module. First, the OLS and RGB images share the same backbone network for joint learning, and the DCFF module dynamically integrates the hierarchical features from the backbone network. In addition, the PMFA module includes multiple cascaded feature integration modules, which gradually integrate multi-scale features via deep supervision in a progressive manner. Experimental results show that the proposed MFFPANet achieves superior performances on two 360 degrees SOD databases.
引用
收藏
页码:776 / 789
页数:14
相关论文
共 50 条
[41]   Evaluating salient object detection in natural images with multiple objects having multi-level saliency [J].
Yildirim, Goekhan ;
Sen, Debashis ;
Kankanhalli, Mohan ;
Suesstrunk, Sabine .
IET IMAGE PROCESSING, 2020, 14 (10) :2249-2262
[42]   REVISITING MULTI-LEVEL FEATURE FUSION: A SIMPLE YET EFFECTIVE NETWORK FOR SALIENT OBJECT DETECTION [J].
Qiu, Yu ;
Liu, Yun ;
Ma, Xiaoxu ;
Liu, Lei ;
Gao, Hongcan ;
Xu, Jing .
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, :4010-4014
[43]   Comprehensive-Detail Synergy with Multi-Level Dynamic Interaction for Enhanced Salient Object Detection [J].
Li, Bingfeng ;
Lv, Boxiang ;
Chen, Qingshan ;
Duan, Xinxin ;
Li, Xinwei .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 159
[44]   Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection [J].
Gao, Wei ;
Liao, Guibiao ;
Ma, Siwei ;
Li, Ge ;
Liang, Yongsheng ;
Lin, Weisi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) :2091-2106
[45]   Salient Object Detection Using Window Mask Transferring with Multi-layer Background Contrast [J].
Zhou, Quan ;
Cai, Shu ;
Zhu, Shaojun ;
Zheng, Baoyu .
COMPUTER VISION - ACCV 2014, PT III, 2015, 9005 :221-235
[46]   Cross-Stage Multi-Scale Interaction Network for RGB-D Salient Object Detection [J].
Yi, Kang ;
Zhu, Jinchao ;
Guo, Fu ;
Xu, Jing .
IEEE SIGNAL PROCESSING LETTERS, 2022, 29 :2402-2406
[47]   FCFIG-Net: feature complementary fusion and information-guided network for RGB-D salient object detection [J].
Du, Haishun ;
Qiao, Kangyi ;
Zhang, Wenzhe ;
Zhang, Zhengyang ;
Wang, Sen .
SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) :8547-8563
[48]   Salient object detection method based on multi-scale feature-fusion guided by edge information [J].
Wang X. ;
Li M. ;
Wang L. ;
Liu F. ;
Wang W. .
Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (01)
[49]   Multi-level cross-modal interaction network for RGB-D salient object detection [J].
Huang, Zhou ;
Chen, Huai-Xin ;
Zhou, Tao ;
Yang, Yun-Zhi ;
Liu, Bi-Yuan .
NEUROCOMPUTING, 2021, 452 :200-211
[50]   DMFNet: geometric multi-scale pixel-level contrastive learning for video salient object detection [J].
Singh, Hemraj ;
Verma, Mridula ;
Cheruku, Ramalingaswamy .
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2025, 14 (02)