Multi-Stage Salient Object Detection in 360° Omnidirectional Image Using Complementary Object-Level Semantic Information

被引:4
作者
Chen, Gang [1 ]
Shao, Feng [1 ]
Chai, Xiongli [1 ]
Jiang, Qiuping [1 ]
Ho, Yo-Sung [2 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Gwangju Inst Sci & Technol, Sch Informat & Commun, Gwangju 500712, South Korea
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 01期
基金
浙江省自然科学基金;
关键词
360 degrees omnidirectional image; object-level semantic image; salient object detection; virtual reality; NETWORK; PREDICTION; MODEL;
D O I
10.1109/TETCI.2023.3259433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, salient object detection (SOD) for 2D images has been extensively studied. However, due to the complexity of scene and the existence of geometric distortions, research on 360 degrees SOD is still lacking with respect to the wide field-of-view. In this paper, we explore a multi-stage solution for SOD of 360 degrees omnidirectional images, which considers the effects of RGB image and the complementary object-level semantic (OLS) information in locating the objects. Specifically, to effectively concatenate two types of features, we propose a novel Multi-level Feature Fusion and Progressive Aggregation Network (MFFPANet) for accurately detecting the salient objects in 360 degrees omnidirectional images, which is mainly composed of a dynamic complementary feature fusion (DCFF) module and a progressive multi-scale feature aggregation (PMFA) module. First, the OLS and RGB images share the same backbone network for joint learning, and the DCFF module dynamically integrates the hierarchical features from the backbone network. In addition, the PMFA module includes multiple cascaded feature integration modules, which gradually integrate multi-scale features via deep supervision in a progressive manner. Experimental results show that the proposed MFFPANet achieves superior performances on two 360 degrees SOD databases.
引用
收藏
页码:776 / 789
页数:14
相关论文
共 50 条
[31]   Automatic Image Annotation using Minimum Barrier Salient Object Detection and Random Forest [J].
Hendrawati, T. ;
Sukajaya, I. N. ;
Aryanto, K. Y. E. .
2018 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA 2018), 2018, :305-310
[32]   Recursive multi-model complementary deep fusion for robust salient object detection via parallel sub-networks [J].
Wu, Zhenyu ;
Li, Shuai ;
Chen, Chenglizhao ;
Hao, Aimin ;
Qin, Hong .
PATTERN RECOGNITION, 2022, 121
[33]   Top-Down Fusing Multi-level Contextual Features for Salient Object Detection [J].
Pan, Mingyuan ;
Song, Huihui ;
Li, Junxia ;
Zhang, Kaihua ;
Liu, Qingshan .
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2020, PT III, 2020, 12307 :54-65
[34]   EDGE COMPLEMENTARY MULTI-SCALE AGGREGATION NETWORK FOR SALIENT OBJECT DETECTION IN OPTICAL REMOTE SENSING IMAGES [J].
Cheng, Bei ;
Liu, Zao ;
Fu, Chengbiao ;
Shen, Tao .
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, :6929-6932
[35]   Structured Object-Level Relational Reasoning CNN-Based Target Detection Algorithm in a Remote Sensing Image [J].
Cheng, Bei ;
Li, Zhengzhou ;
Xu, Bitong ;
Yao, Xu ;
Ding, Zhiquan ;
Qin, Tianqi .
REMOTE SENSING, 2021, 13 (02) :1-27
[36]   3MNet: Multi-task, multi-level and multi-channel feature aggregation network for salient object detection [J].
Yan, Xinghe ;
Chen, Zhenxue ;
Wu, Q. M. Jonathan ;
Lu, Mengxu ;
Sun, Luna .
MACHINE VISION AND APPLICATIONS, 2021, 32 (02)
[37]   Edge-Aware Multi-Level Interactive Network for Salient Object Detection of Strip Steel Surface Defects [J].
Zhou, Xiaofei ;
Fang, Hao ;
Fei, Xiaobo ;
Shi, Ran ;
Zhang, Jiyong .
IEEE ACCESS, 2021, 9 :149465-149476
[38]   Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection [J].
Jiang, Chenzhe ;
Xu, Banglian ;
Zheng, Qinghe ;
Li, Zhengtao ;
Zhang, Leihong ;
Shen, Zimin ;
Sun, Quan ;
Zhang, Dawei .
IET SIGNAL PROCESSING, 2024, 2024
[39]   A novel position prior using fusion of rule of thirds and image center for salient object detection [J].
Navjot Singh ;
Rinki Arya ;
R. K. Agrawal .
Multimedia Tools and Applications, 2017, 76 :10521-10538
[40]   Multi-Level Context Aggregation Network With Channel-Wise Attention for Salient Object Detection [J].
Jia, Zihui ;
Weng, Zhenyu ;
Wan, Fang ;
Zhu, Yuesheng .
IEEE ACCESS, 2020, 8 :102303-102312