Anomaly Detection for Automated Vehicles Integrating Continuous Wavelet Transform and Convolutional Neural Network

被引:4
|
作者
Wang, Liyuan [1 ]
Zhang, Xiaomei [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
connected and automated vehicles; anomaly detection; continuous wavelet transform; convolutional neural network;
D O I
10.3390/app13095525
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Connected and automated vehicles (CAVs) involving massive advanced sensors and electronic control units (ECUs) bring intelligentization to the transportation system and conveniences to human mobility. Unfortunately, these automated vehicles face security threats due to complexity and connectivity. Especially, the existing in-vehicle network protocols (e.g., controller area network) lack security consideration, which is vulnerable to malicious attacks and puts people at large-scale severe risks. In this paper, we propose a novel anomaly detection model that integrates a continuous wavelet transform (CWT) and convolutional neural network (CNN) for an in-vehicle network. By transforming in-vehicle sensor signals in different segments, we adopt CWT to calculate wavelet coefficients for vehicle state image construction so that the model exploits both the time and frequency domain characteristics of the raw data, which can demonstrate more hidden patterns of vehicle events and improve the accuracy of the follow-up detection process. Our model constructs a two-dimensional continuous wavelet transform scalogram (CWTS) and utilizes it as an input into our optimized CNN. The proposed model is able to provide local transient characteristics of the signals so that it can detect anomaly deviations caused by malicious behaviors, and the model is effective for coping with various vehicle anomalies. The experiments show the superior performance of our proposed model under different anomaly scenarios. Compared with related works, the average accuracy and F1 score are improved by 2.51% and 2.46%.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network
    Wang, Tao
    Lu, Changhua
    Sun, Yining
    Yang, Mei
    Liu, Chun
    Ou, Chunsheng
    ENTROPY, 2021, 23 (01) : 1 - 13
  • [2] Anomaly Detection in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network
    Javed, Abdul Rehman
    Usman, Muhammad
    Rehman, Saif Ur
    Khan, Mohib Ullah
    Haghighi, Mohammad Sayad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4291 - 4300
  • [3] A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform
    Toma, Tabassum Islam
    Choi, Sunwoong
    SENSORS, 2022, 22 (19)
  • [4] Automated Detection of Hypertension Using Continuous Wavelet Transform and a Deep Neural Network with Ballistocardiography Signals
    Rajput, Jaypal Singh
    Sharma, Manish
    Kumar, T. Sudheer
    Acharya, U. Rajendra
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (07)
  • [5] Rolling Bearing Fault Diagnosis based on Continuous Wavelet Transform and Transfer Convolutional Neural Network
    Lai, Yuehua
    Chen, Jianxun
    Wang, Ganlong
    Wang, Zeshen
    Miao, Pu
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [6] Damage identification for mining wire rope based on continuous wavelet transform and convolutional neural network
    Tian, Jie
    Zhao, Chun
    Wang, Hongyao
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [7] Sensor Data Based Anomaly Detection in Autonomous Vehicles using Modified Convolutional Neural Network
    Rajendar, Sivaramakrishnan
    Kaliappan, Vishnu Kumar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02) : 859 - 875
  • [8] MDDC: melanoma detection using discrete wavelet transform and convolutional neural network
    Asadi O.
    Yekkalam A.
    Manthouri M.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12959 - 12966
  • [9] Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network
    Li, Qichen
    Liu, Chengyu
    Li, Qiao
    Shashikumar, Supreeth P.
    Nemati, Shamim
    Shen, Zichao
    Clifford, Gari D.
    PHYSIOLOGICAL MEASUREMENT, 2019, 40 (05)
  • [10] Void detection for tunnel lining backfill using impact-echo method based on continuous wavelet transform and convolutional neural network
    Leea, Jiyun
    Kimb, Kyuwon
    Kangc, Meiyan
    Hongd, Eun-Soo
    Choi, Suyoung
    GEOMECHANICS AND ENGINEERING, 2024, 36 (01) : 1 - 8