A discontinuity-preserving regularization for deep learning-based cardiac image registration

被引:1
作者
Lu, Jiayi [1 ]
Jin, Renchao [1 ]
Wang, Manyang [1 ]
Song, Enmin [1 ]
Ma, Guangzhi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
discontinuity-preserving regularization; deep learning; cardiac image registration;
D O I
10.1088/1361-6560/accdb1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Sliding motion may occur between organs in anatomical regions due to respiratory motion and heart beating. This issue is often neglected in previous studies, resulting in poor image registration performance. A new approach is proposed to handle discontinuity at the boundary and improve registration accuracy. Approach. The proposed discontinuity-preserving regularization (DPR) term can maintain local discontinuities. It leverages the segmentation mask to find organ boundaries and then relaxes the displacement field constraints in these boundary regions. A weakly supervised method using mask dissimilarity loss (MDL) is also proposed. It employs a simple formula to calculate the similarity between the fixed image mask and the deformed moving image mask. These two strategies are added to the loss function during network training to guide the model better to update parameters. Furthermore, during inference time, no segmentation mask information is needed. Main results. Adding the proposed DPR term increases the Dice coefficients by 0.005, 0.009, and 0.081 for three existing registration neural networks CRNet, VoxelMorph, and ViT-V-Net, respectively. It also shows significant improvements in other metrics, including Hausdorff Distance and Average Surface Distance. All quantitative indicator results with MDL have been slightly improved within 1%. After applying these two regularization terms, the generated displacement field is more reasonable at the boundary, and the deformed moving image is closer to the fixed image. Significance. This study demonstrates that the proposed regularization terms can effectively handle discontinuities at the boundaries of organs and improve the accuracy of deep learning-based cardiac image registration methods. Besides, they are generic to be extended to other networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Deep Discontinuity-Preserving Image Registration Network
    Chen, Xiang
    Xia, Yan
    Ravikumar, Nishant
    Frangi, Alejandro F.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV, 2021, 12904 : 46 - 55
  • [2] Optic flow based on multi-scale anchor point movement and discontinuity-preserving regularization
    van Dorst, P. A. G.
    Janssen, B. J.
    Florack, L. M. J.
    Romeny, B. M. Ter Haar
    PATTERN RECOGNITION, 2011, 44 (09) : 2057 - 2062
  • [3] A Survey on Deep Learning-Based Medical Image Registration
    Xu, Ronghao
    Liu, Chongxin
    Liu, Shuaitong
    Huang, Weijie
    Zhang, Menghua
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 332 - 346
  • [4] Deep learning-based lung image registration: A review
    Xiao, Hanguang
    Xue, Xufeng
    Zhu, Mi
    Jiang, Xin
    Xia, Qingling
    Chen, Kai
    Li, Huanqi
    Long, Li
    Peng, Ke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [5] A review of deep learning-based deformable medical image registration
    Zou, Jing
    Gao, Bingchen
    Song, Youyi
    Qin, Jing
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [6] Unsupervised deep learning-based medical image registration: a survey
    Duan, Taisen
    Chen, Wenkang
    Ruan, Meilin
    Zhang, Xuejun
    Shen, Shaofei
    Gu, Weiyu
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (02)
  • [7] HGCMorph: joint discontinuity-preserving and pose-learning via GNN and capsule networks for deformable medical images registration
    Yan, Zhiyue
    Ji, Jianhua
    Ma, Jia
    Cao, Wenming
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (07)
  • [8] Deep Learning-Based Fetal Development Ultrasound Image Segmentation and Registration
    Zhou, Yang
    Cao, Chuang
    TRAITEMENT DU SIGNAL, 2023, 40 (01) : 343 - 349
  • [9] Deep Learning Based Parameterization of Diffeomorphic Image Registration for Cardiac Image Segmentation
    Sheikhjafari, Ameneh
    Krishnaswamy, Deepa
    Noga, Michelle
    Ray, Nilanjan
    Punithakumar, Kumaradevan
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2023, 22 (04) : 800 - 807
  • [10] Application of Deep Learning-Based Image Registration Techniques in Autonomous Robot Navigation
    Chen, Xuhan
    Wang, Tianze
    Un, Chye En
    Qin, Hongwu
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 2115 - 2122