On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film

被引:1
作者
Lahlah, Hana Taklit [1 ]
Benseridi, Hamid [1 ]
Cherif, Bahri [2 ]
Dilmi, Mourad [1 ]
Boulaaras, Salah [2 ]
Alharbi, Rabab [2 ]
机构
[1] Univ Ferhat ABBAS Setif 1, Fac Sci, Dept Math, Appl Math Lab, Setif 19000, Algeria
[2] Qassim Univ, Coll Sci & Arts ArRass, Dept Math, Qasim, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 06期
关键词
mathematical operators; partial differential equations; Coulomb law; non-Newtonian fluid; weak generalized equation; variational inequality; HERSCHEL-BULKLEY FLUID; ASYMPTOTIC ANALYSIS; LUBRICATION PROBLEM; UNILATERAL CONTACT; THERMAL-CONVECTION; NUMERICAL-ANALYSIS; DOMAIN; FLOWS; BEHAVIOR;
D O I
10.3934/math.2023635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to examine the strong convergence of the velocity of a nonNewtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter epsilon. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.
引用
收藏
页码:12637 / 12656
页数:20
相关论文
共 27 条