Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

被引:12
作者
Montezuma, Diana [1 ,2 ,3 ]
Oliveira, Sara P. [4 ,5 ]
Neto, Pedro C. [4 ,5 ]
Oliveira, Domingos [1 ]
Monteiro, Ana [1 ]
Cardoso, Jaime S. [4 ,5 ]
Macedo-Pinto, Isabel [1 ]
机构
[1] IMP Diagnost, Porto, Portugal
[2] Portuguese Oncol Inst Porto IPO Porto, CI IPOP RISE CI IPOP Hlth Res Network, Porto Comprehens Canc Ctr Porto CCC, Res Ctr IPO Porto,Canc Biol & Epigenet Grp, Porto, Portugal
[3] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Porto, Portugal
[4] Inst Syst & Comp Engn, Telecommun & Multimedia Unit, Technol & Sci INESC TEC, Porto, Portugal
[5] Univ Porto FEUP, Fac Engn, Porto, Portugal
关键词
annotation; artificial intelligence; computational pathology; digital pathology; MANAGEMENT; PLATFORM; CELL;
D O I
10.1016/j.modpat.2022.100086
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
[31]   Banff Digital Pathology Working Group: Image Bank, Artificial Intelligence Algorithm, and Challenge Trial Developments [J].
Farris, Alton B. ;
Alexander, Mariam P. ;
Balis, Ulysses G. J. ;
Barisoni, Laura ;
Boor, Peter ;
Buelow, Roman D. ;
Cornell, Lynn D. ;
Demetris, Anthony J. ;
Farkash, Evan ;
Hermsen, Meyke ;
Hogan, Julien ;
Kain, Renate ;
Kers, Jesper ;
Kong, Jun ;
Levenson, Richard M. ;
Loupy, Alexandre ;
Naesens, Maarten ;
Sarder, Pinaki ;
Tomaszewski, John E. ;
van der Laak, Jeroen ;
van Midden, Dominique ;
Yagi, Yukako ;
Solez, Kim .
TRANSPLANT INTERNATIONAL, 2023, 36
[32]   Artificial intelligence and its applications in digital hematopathology [J].
Hu, Yongfei ;
Luo, Yinglun ;
Tang, Guangjue ;
Huang, Yan ;
Kang, Juanjuan ;
Wang, Dong .
BLOOD SCIENCE, 2022, 4 (03) :136-142
[33]   Practical Applications of Artificial Intelligence in Spine Imaging: A Review [J].
Bharadwaj, Upasana Upadhyay ;
Chin, Cynthia T. ;
Majumdar, Sharmila .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (02) :355-370
[34]   Integrating telepathology and digital pathology with artificial intelligence: An inevitable future [J].
Battazza, Alexandre ;
Brasileiro, Felipe Cesar da Silva ;
Tasaka, Ana Cristina ;
Bulla, Camilo ;
Ximenes, Pedro Pol ;
Hosomi, Juliana Emi ;
da Silva, Patricia Fernanda ;
da Silva, Larissa Freire ;
de Moura, Fernanda Barthelson Carvalho ;
Rocha, Noeme Sousa .
VETERINARY WORLD, 2024, 17 (08) :1667-1671
[35]   Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology [J].
Lin, Elisa ;
Fuda, Franklin ;
Luu, Hung S. ;
Cox, Andrew M. ;
Fang, Fengqi ;
Feng, Junlin ;
Chen, Mingyi .
SEMINARS IN DIAGNOSTIC PATHOLOGY, 2023, 40 (02) :88-94
[36]   Development of a multi-scanner facility for data acquisition for digital pathology artificial intelligence [J].
Humphries, Matthew P. ;
Kaye, Danny ;
Stankeviciute, Gaby ;
Halliwell, Jacob ;
Wright, Alexander, I ;
Bansal, Daljeet ;
Brettle, David ;
Treanor, Darren .
JOURNAL OF PATHOLOGY, 2024, 264 (01) :80-89
[37]   Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape [J].
Ailia, Muhammad Joan ;
Thakur, Nishant ;
Abdul-Ghafar, Jamshid ;
Jung, Chan Kwon ;
Yim, Kwangil ;
Chong, Yosep .
CANCERS, 2022, 14 (10)
[38]   In the use of Artificial Intelligence and Hyperspectral Imaging in Digital Pathology for Breast Cancer Cell Identification [J].
Quintana, Laura ;
Ortega, Samuel ;
Leon, Raquel ;
Fabelo, Himar ;
Balea-Fernandez, Francisco J. ;
Sauras, Esther ;
Lejeune, Marylene ;
Bosch, Ramon ;
Lopez, Carlos ;
Callico, Gustavo M. .
MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
[39]   A Practical Guide to Artificial Intelligence-Based Image Analysis in Radiology [J].
Weikert, Thomas ;
Cyriac, Joshy ;
Yang, Shan ;
Nesic, Ivan ;
Parmar, Victor ;
Stieltjes, Bram .
INVESTIGATIVE RADIOLOGY, 2020, 55 (01) :1-7
[40]   The legal regulation of artificial intelligence in the European Union: A practical guide for radiologists [J].
Santos, A. Morales ;
Lendoiro, S. Lojo ;
Canellas, M. Rovira ;
Solis, P. Valdes .
RADIOLOGIA, 2024, 66 (05) :431-446