Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

被引:16
作者
Montezuma, Diana [1 ,2 ,3 ]
Oliveira, Sara P. [4 ,5 ]
Neto, Pedro C. [4 ,5 ]
Oliveira, Domingos [1 ]
Monteiro, Ana [1 ]
Cardoso, Jaime S. [4 ,5 ]
Macedo-Pinto, Isabel [1 ]
机构
[1] IMP Diagnost, Porto, Portugal
[2] Portuguese Oncol Inst Porto IPO Porto, CI IPOP RISE CI IPOP Hlth Res Network, Porto Comprehens Canc Ctr Porto CCC, Res Ctr IPO Porto,Canc Biol & Epigenet Grp, Porto, Portugal
[3] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Porto, Portugal
[4] Inst Syst & Comp Engn, Telecommun & Multimedia Unit, Technol & Sci INESC TEC, Porto, Portugal
[5] Univ Porto FEUP, Fac Engn, Porto, Portugal
关键词
annotation; artificial intelligence; computational pathology; digital pathology; MANAGEMENT; PLATFORM; CELL;
D O I
10.1016/j.modpat.2022.100086
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
[21]   Artificial Intelligence in pathology: current applications, limitations, and future directions [J].
Sajithkumar, Akhil ;
Thomas, Jubin ;
Saji, Ajish Meprathumalil ;
Ali, Fousiya ;
Hasin, E. K. Haneena ;
Adampulan, Hannan Abdul Gafoor ;
Sarathchand, Swathy .
IRISH JOURNAL OF MEDICAL SCIENCE, 2024, 193 (02) :1117-1121
[22]   Current and future applications of artificial intelligence in pathology: a clinical perspective [J].
Rakha, Emad A. ;
Toss, Michael ;
Shiino, Sho ;
Gamble, Paul ;
Jaroensri, Ronnachai ;
Mermel, Craig H. ;
Chen, Po-Hsuan Cameron .
JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (07) :409-414
[23]   Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology [J].
El Achi, Hanadi ;
Khoury, Joseph D. .
CANCERS, 2020, 12 (04)
[24]   Multi-modality artificial intelligence in digital pathology [J].
Qiao, Yixuan ;
Zhao, Lianhe ;
Luo, Chunlong ;
Luo, Yufan ;
Wu, Yang ;
Li, Shengtong ;
Bu, Dechao ;
Zhao, Yi .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
[25]   Application of Digital Imaging and Artificial Intelligence to Pathology of the Placenta [J].
Marletta, Stefano ;
Pantanowitz, Liron ;
Santonicco, Nicola ;
Caputo, Alessandro ;
Bragantini, Emma ;
Brunelli, Matteo ;
Girolami, Ilaria ;
Eccher, Albino .
PEDIATRIC AND DEVELOPMENTAL PATHOLOGY, 2023, 26 (01) :5-12
[26]   Artificial Intelligence in Digital Pathology: What Is the Future? Part 1: From the Digital Slide Onwards [J].
Giovagnoli, Maria Rosaria ;
Giansanti, Daniele .
HEALTHCARE, 2021, 9 (07)
[27]   Practical guide to training and validation for primary diagnosis with digital pathology [J].
Williams, Bethany Jill ;
Treanor, Darren .
JOURNAL OF CLINICAL PATHOLOGY, 2020, 73 (07) :418-422
[28]   Informed consent for artificial intelligence in emergency medicine: A practical guide [J].
Iserson, Kenneth, V .
AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2024, 76 :225-230
[29]   Advances in Digital Pathology: From Artificial Intelligence to Label-Free Imaging [J].
Grosserueschkamp, Frederik ;
Juette, Hendrik ;
Gerwert, Klaus ;
Tannapfel, Andrea .
VISCERAL MEDICINE, 2021, :482-490
[30]   The future of artificial intelligence in digital pathology - results of a survey across stakeholder groups [J].
Heinz, Celine N. ;
Echle, Amelie ;
Foersch, Sebastian ;
Bychkov, Andrey ;
Kather, Jakob Nikolas .
HISTOPATHOLOGY, 2022, 80 (07) :1121-1127