Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

被引:11
|
作者
Montezuma, Diana [1 ,2 ,3 ]
Oliveira, Sara P. [4 ,5 ]
Neto, Pedro C. [4 ,5 ]
Oliveira, Domingos [1 ]
Monteiro, Ana [1 ]
Cardoso, Jaime S. [4 ,5 ]
Macedo-Pinto, Isabel [1 ]
机构
[1] IMP Diagnost, Porto, Portugal
[2] Portuguese Oncol Inst Porto IPO Porto, CI IPOP RISE CI IPOP Hlth Res Network, Porto Comprehens Canc Ctr Porto CCC, Res Ctr IPO Porto,Canc Biol & Epigenet Grp, Porto, Portugal
[3] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Porto, Portugal
[4] Inst Syst & Comp Engn, Telecommun & Multimedia Unit, Technol & Sci INESC TEC, Porto, Portugal
[5] Univ Porto FEUP, Fac Engn, Porto, Portugal
关键词
annotation; artificial intelligence; computational pathology; digital pathology; MANAGEMENT; PLATFORM; CELL;
D O I
10.1016/j.modpat.2022.100086
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Artificial Intelligence in Pathology: A Simple and Practical Guide
    Yao, Keluo
    Singh, Amol
    Sridhar, Kaushik
    Blau, John L.
    Ohgami, Robert S.
    ADVANCES IN ANATOMIC PATHOLOGY, 2020, 27 (06) : 385 - 393
  • [2] Applications of artificial intelligence in digital pathology for gastric cancer
    Chen, Sheng
    Ding, Ping'an
    Guo, Honghai
    Meng, Lingjiao
    Zhao, Qun
    Li, Cong
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [3] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Okyaz Eminaga
    Mahmoud Abbas
    Christian Kunder
    Yuri Tolkach
    Ryan Han
    James D. Brooks
    Rosalie Nolley
    Axel Semjonow
    Martin Boegemann
    Robert West
    Jin Long
    Richard E. Fan
    Olaf Bettendorf
    Scientific Reports, 14
  • [4] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Eminaga, Okyaz
    Abbas, Mahmoud
    Kunder, Christian
    Tolkach, Yuri
    Han, Ryan
    Brooks, James D.
    Nolley, Rosalie
    Semjonow, Axel
    Boegemann, Martin
    West, Robert
    Long, Jin
    Fan, Richard E.
    Bettendorf, Olaf
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] Survey of liver pathologists to assess attitudes towards digital pathology and artificial intelligence
    McGenity, Clare
    Randell, Rebecca
    Bellamy, Christopher
    Burt, Alastair
    Cratchley, Alyn
    Goldin, Robert
    Hubscher, Stefan G.
    Neil, Desley A. H.
    Quaglia, Alberto
    Tiniakos, Dina
    Wyatt, Judy
    Treanor, Darren
    JOURNAL OF CLINICAL PATHOLOGY, 2024, 77 (01) : 27 - 33
  • [6] Artificial intelligence in digital breast pathology: Techniques and applications
    Ibrahim, Asmaa
    Gamble, Paul
    Jaroensri, Ronnachai
    Abdelsamea, Mohammed M.
    Mermel, Craig H.
    Chen, Po-Hsuan Cameron
    Rakha, Emad A.
    BREAST, 2020, 49 : 267 - 273
  • [7] Current trends of artificial intelligence and applications in digital pathology: A comprehensive review
    Goswami, Neelankit Gautam
    Karnad, Shreyas
    Sampathila, Niranjana
    Bairy, G. Muralidhar
    Chadaga, Krishnaraj
    Swathi, K. S.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2023, 10 (12): : 29 - 41
  • [8] The state of the art for artificial intelligence in lung digital pathology
    Viswanathan, Vidya Sankar
    Toro, Paula
    Corredor, German
    Mukhopadhyay, Sanjay
    Madabhushi, Anant
    JOURNAL OF PATHOLOGY, 2022, 257 (04) : 413 - 429
  • [9] Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal Cancers
    Wong, Alex Ngai Nick
    He, Zebang
    Leung, Ka Long
    To, Curtis Chun Kit
    Wong, Chun Yin
    Wong, Sze Chuen Cesar
    Yoo, Jung Sun
    Chan, Cheong Kin Ronald
    Chan, Angela Zaneta
    Lacambra, Maribel D.
    Yeung, Martin Ho Yin
    CANCERS, 2022, 14 (15)
  • [10] Whole Slide Images in Artificial Intelligence Applications in Digital Pathology: Challenges and Pitfalls
    Basak, Kayhan
    Ozyoruk, Kutsev Bengisu
    Demir, Derya
    TURKISH JOURNAL OF PATHOLOGY, 2023, 39 (02) : 101 - 108