Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images

被引:18
|
作者
Lv, Baolong [1 ]
Liu, Feng [2 ,3 ]
Li, Yulin [1 ]
Nie, Jianhua [4 ]
Gou, Fangfang [5 ]
Wu, Jia [5 ,6 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Modern Serv Management, Jinan 250102, Peoples R China
[2] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250102, Peoples R China
[3] New Technol Res & Dev Ctr Intelligent Informat Con, Jinan 250103, Peoples R China
[4] Shandong Prov Peoples Govt Adm Guarantee Ctr, Jinan 250011, Peoples R China
[5] Cent South Univ, Sch Comp Sci & Engn, Changsha 410017, Peoples R China
[6] Monash Univ, Res Ctr Artificial Intelligence, Melbourne, Vic 3800, Australia
关键词
osteosarcoma; artificial intelligence; magnetic resonance imaging (MRI); pre-screening; denoising; edge enhancement; OSTEOSARCOMA SEGMENTATION; TRANSFORMER; NETWORK;
D O I
10.3390/diagnostics13061063
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Bone malignant tumors are metastatic and aggressive. The manual screening of medical images is time-consuming and laborious, and computer technology is now being introduced to aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI images, high-precision segmentation methods require large computational resources and are difficult to use in developing countries with limited conditions. Therefore, this study proposes an artificial intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement (TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion transformer and a segmentation method with a combined loss function. This solution optimizes diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma MRI images show that our proposed method has a good segmentation effect and performance, with Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as Intersection of Union (IOU) and recall are better than other methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bibliometrics researches on the application of artificial intelligence-aided diagnosis system in CT medical diagnosis
    Lei, Yuxin
    Zhang, Weiguo
    Zhang, Zhu
    Li, Meiran
    INNOVATION AND EMERGING TECHNOLOGIES, 2024, 11
  • [2] Artificial intelligence-aided diagnosis and treatment in the field of optometry
    Du, Hua-Qing
    Dai, Qi
    Zhang, Zu-Hui
    Wang, Chen-Chen
    Zhai, Jing
    Yang, Wei-Hua
    Zhu, Tie-Pei
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2023, 16 (09) : 1406 - 1416
  • [3] Artificial intelligence-aided optical imaging for cancer theranostics
    Xu, Mengze
    Chen, Zhiyi
    Zheng, Junxiao
    Zhao, Qi
    Yuan, Zhen
    SEMINARS IN CANCER BIOLOGY, 2023, 94 : 62 - 80
  • [4] Artificial intelligence-aided decision support in paediatrics clinical diagnosis: development and future prospects
    Li, Yawen
    Zhang, Tiannan
    Yang, Yushan
    Gao, Yuchen
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2020, 48 (09)
  • [5] Artificial intelligence-aided colonoscopy: Recent developments and future perspectives
    Antonelli, Giulio
    Gkolfakis, Paraskevas
    Tziatzios, Georgios
    Papanikolaou, Ioannis S.
    Triantafyllou, Konstantinos
    Hassan, Cesare
    WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (47) : 7436 - 7443
  • [6] Artificial intelligence-aided colonoscopic differential diagnosis between Crohn's disease and gastrointestinal tuberculosis
    Park, Kwangbeom
    Lim, Jisup
    Shin, Seung Hwan
    Ryu, Minkyeong
    Shin, Hyungeun
    Lee, Minyoung
    Hong, Seung Wook
    Hwang, Sung Wook
    Park, Sang Hyoung
    Yang, Dong-Hoon
    Ye, Byong Duk
    Myung, Seung-Jae
    Yang, Suk-Kyun
    Kim, Namkug
    Byeon, Jeong-Sik
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2025, 40 (01) : 115 - 122
  • [7] An artificial intelligence-aided design (AIAD) of ship hull structures
    Ao, Yu
    Li, Yunbo
    Gong, Jiaye
    Li, Shaofan
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2023, 8 (01) : 15 - 32
  • [8] Emerging artificial intelligence-aided diagnosis and management methods for ischemic strokes and vascular occlusions: A comprehensive review
    Parvathy, Gauri
    Kamaraj, Balakrishnan
    Sah, Bikikumar
    Maheshwari, Aakansh Rahul
    Alexander, Aiswariya Anna
    Dixit, Vindhesh
    Mumtaz, Hassan
    Saqib, Muhammad
    WORLD NEUROSURGERY-X, 2024, 22
  • [9] Big data and artificial intelligence-aided crop breeding: Progress and prospects
    Zhu, Wanchao
    Li, Weifu
    Zhang, Hongwei
    Li, Lin
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2024,
  • [10] Assessment of artificial intelligence-aided computed tomography in lung cancer screening
    Noha A. Aboelenin
    Ahmed Elserafi
    Noha Zaki
    Essam A. Rashed
    Mohammad al-Shatouri
    Egyptian Journal of Radiology and Nuclear Medicine, 54