Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector

被引:89
作者
Wang, Yixian [1 ,2 ]
Liu, Yijie [1 ,2 ]
Nguyen, Mai [3 ]
Cho, Jaeyoung [3 ]
Katyal, Naman [3 ]
Vishnugopi, Bairav S. S. [4 ]
Hao, Hongchang [1 ,2 ]
Fang, Ruyi [1 ,2 ]
Wu, Nan [1 ,2 ]
Liu, Pengcheng [1 ,2 ]
Mukherjee, Partha P. P. [4 ]
Nanda, Jagjit [5 ]
Henkelman, Graeme [3 ]
Watt, John [6 ]
Mitlin, David [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, TMI, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[4] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[5] SLAC Natl Lab, Appl Energy Div, Menlo Pk, CA 94025 USA
[6] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
关键词
all-solid-state batteries; anode-free batteries; cryogenic microscopy; dead lithium; solid-state electrolytes; LONG CYCLE LIFE; INTERFACE STABILITY; ELECTROCHEMICAL PERFORMANCE; INTERPHASE FORMATION; ELECTROLYTES; GROWTH; CONDUCTOR; CATHODES; DENDRITE; MECHANICS;
D O I
10.1002/adma.202206762
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6PS5Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 mu m Li2Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm(-2)), the accumulated thickness of electrodeposited Li on Li2Te-Cu is more than 70 mu m, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.
引用
收藏
页数:17
相关论文
共 123 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution [J].
Adeli, Parvin ;
Bazak, J. David ;
Park, Kern Ho ;
Kochetkov, Ivan ;
Huq, Ashfia ;
Goward, Gillian R. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) :8681-8686
[3]   Challenges for and Pathways toward Li-MetalBased All-Solid-State Batteries [J].
Albertus, Paul ;
Anandan, Venkataramani ;
Ban, Chunmei ;
Balsara, Nitash ;
Belharouak, Ilias ;
Buettner-Garrett, Josh ;
Chen, Zonghai ;
Daniel, Claus ;
Doeff, Marca ;
Dudney, Nancy J. ;
Dunn, Bruce ;
Harris, Stephen J. ;
Herle, Subramanya ;
Herbert, Eric ;
Kalnaus, Sergiy ;
Libera, Joesph A. ;
Lu, Dongping ;
Martin, Steve ;
McCloskey, Bryan D. ;
McDowell, Matthew T. ;
Meng, Y. Shirley ;
Nanda, Jagjit ;
Sakamoto, Jeff ;
Self, Ethan C. ;
Tepavcevic, Sanja ;
Wachsman, Eric ;
Wang, Chunsheng ;
Westover, Andrew S. ;
Xiao, Jie ;
Yersak, Thomas .
ACS ENERGY LETTERS, 2021, 6 (04) :1399-1404
[4]   Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification [J].
Alexander, George V. ;
Rosero-Navarro, Nataly Carolina ;
Miura, Akira ;
Tadanaga, Kiyoharu ;
Murugan, Ramaswamy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :21018-21028
[5]   On the lithiation-delithiation of tin and tin-based intermetallic compounds on carbon paper current collector-substrate [J].
Arbizzani, C. ;
Beninati, S. ;
Lazzari, A. ;
Mastragostino, M. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :635-640
[6]   Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries [J].
Assegie, Addisu Alemayehu ;
Chung, Cheng-Chu ;
Tsai, Meng-Che ;
Su, Wei-Nien ;
Chen, Chun-Wei ;
Hwang, Bing-Joe .
NANOSCALE, 2019, 11 (06) :2710-2720
[7]   Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Ledeuil, Jean-Bernard ;
Viallet, Virginie ;
Seznec, Vincent ;
Dedryvere, Remi .
CHEMISTRY OF MATERIALS, 2017, 29 (09) :3883-3890
[8]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[9]   Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries [J].
Banerjee, Abhik ;
Tang, Hanmei ;
Wang, Xuefeng ;
Cheng, Ju-Hsiang ;
Han Nguyen ;
Zhang, Minghao ;
Tang, Darren H. S. ;
Wynn, Thomas A. ;
Wu, Erik A. ;
Doux, Jean-Marie ;
Wu, Tianpin ;
Ma, Lu ;
Sterbinsky, George E. ;
D'Souza, Macwin Savio ;
Ong, Shyue Ping ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43138-43145
[10]   Cathode-Sulfide Solid Electrolyte Interfacial Instability: Challenges and Solutions [J].
Brahmbhatt, Teerth ;
Yang, Guang ;
Self, Ethan C. ;
Nanda, Jagjit .
FRONTIERS IN ENERGY RESEARCH, 2020, 8