Machine learning identifies a profile of inadequate responder to methotrexate in rheumatoid arthritis

被引:12
作者
Duquesne, Julien [1 ]
Bouget, Vincent [1 ]
Cournede, Paul Henry [2 ]
Fautrel, Bruno [3 ,4 ]
Guillemin, Francis [5 ]
de Jong, Pascal H. P. [6 ]
Heutz, Judith W. [6 ]
Verstappen, Marloes [7 ]
van der Helm-van Mil, Annette H. M. [7 ]
Mariette, Xavier [8 ]
Bitoun, Samuel [8 ]
机构
[1] Scienta Lab, Paris, France
[2] Univ Paris Saclay, Lab Math & Comp Sci MICS, Cent Supelec, Gif Sur Yvette, France
[3] Sorbonne Univ, Grp Hosp Pitie Salpetriere, AP HP, Serv Rhumatol, Paris, France
[4] INSERM, Inst Pierre Louis Epidemiol & Sante Publ, Equipe PEPITES Pharmacoepidemiol & Evaluat Soins, UMRS 1136, Paris, France
[5] Univ Lorraine, APEMAC, Nancy, France
[6] Erasmus MC, Dept Rheumatol, Rotterdam, Netherlands
[7] Leiden Univ, Dept Rheumatol, Med Ctr, Leiden, Netherlands
[8] Univ Paris Saclay, Hop Bicetre, AP HP, Dept Rheumatol,INSERM,UMR 1184,FHU CARE, Le Kremlin Bicetre, France
关键词
RA; MTX; treatment response; machine learning; biomarker; AMERICAN-COLLEGE; RHEUMATOLOGY/EUROPEAN LEAGUE; CLASSIFICATION CRITERIA; PREDICTION;
D O I
10.1093/rheumatology/keac645
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives Around 30% of patients with RA have an inadequate response to MTX. We aimed to use routine clinical and biological data to build machine learning models predicting EULAR inadequate response to MTX and to identify simple predictive biomarkers. Methods Models were trained on RA patients fulfilling the 2010 ACR/EULAR criteria from the ESPOIR and Leiden EAC cohorts to predict the EULAR response at 9 months (+/- 6 months). Several models were compared on the training set using the AUROC. The best model was evaluated on an external validation cohort (tREACH). The model's predictions were explained using Shapley values to extract a biomarker of inadequate response. Results We included 493 therapeutic sequences from ESPOIR, 239 from EAC and 138 from tREACH. The model selected DAS28, Lymphocytes, Creatininemia, Leucocytes, AST, ALT, swollen joint count and corticosteroid co-treatment as predictors. The model reached an AUROC of 0.72 [95% CI (0.63, 0.80)] on the external validation set, where 70% of patients were responders to MTX. Patients predicted as inadequate responders had only 38% [95% CI (20%, 58%)] chance to respond and using the algorithm to decide to initiate MTX would decrease inadequate-response rate from 30% to 23% [95% CI: (17%, 29%)]. A biomarker was identified in patients with moderate or high activity (DAS28 > 3.2): patients with a lymphocyte count superior to 2000 cells/mm(3) are significantly less likely to respond. Conclusion Our study highlights the usefulness of machine learning in unveiling subgroups of inadequate responders to MTX to guide new therapeutic strategies. Further work is needed to validate this approach.
引用
收藏
页码:2402 / 2409
页数:8
相关论文
共 40 条
  • [1] Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis
    Aggarwal, Ravi
    Sounderajah, Viknesh
    Martin, Guy
    Ting, Daniel S. W.
    Karthikesalingam, Alan
    King, Dominic
    Ashrafian, Hutan
    Darzi, Ara
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [2] Osteoarthritis endotype discovery via clustering of biochemical marker data
    Angelini, Federico
    Widera, Pawel
    Mobasheri, Ali
    Blair, Joseph
    Struglics, Andre
    Uebelhoer, Melanie
    Henrotin, Yves
    Marijnissen, Anne Ca
    Kloppenburg, Margreet
    Blanco, Francisco J.
    Haugen, Ida K.
    Berenbaum, Francis
    Ladel, Christoph
    Larkin, Jonathan
    Bay-Jensen, Anne C.
    Bacardit, Jaume
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (05) : 666 - 675
  • [3] Methotrexate and BAFF interaction prevents immunization against TNF inhibitors
    Bitoun, Samuel
    Nocturne, Gaetane
    Ly, Bineta
    Krzysiek, Roman
    Roques, Pierre
    Pruvost, Alain
    Paoletti, Audrey
    Pascaud, Juliette
    Donnes, Pierre
    Florence, Kimberly
    Gleizes, Aude
    Hincelin-Mery, Agnes
    Allez, Matthieu
    Hacein-Bey-Abina, Salima
    Mackay, Fabienne
    Pallardy, Marc
    Le Grand, Roger
    Mariette, Xavier
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 (10) : 1463 - 1470
  • [4] Machine learning predicts response to TNF inhibitors in rheumatoid arthritis: results on the ESPOIR and ABIRISK cohorts
    Bouget, Vincent
    Duquesne, Julien
    Hassler, Signe
    Cournede, Paul-Henry
    Fautrel, Bruno
    Guillemin, Francis
    Pallardy, Marc
    Broet, Philippe
    Mariette, Xavier
    Bitoun, Samuel
    [J]. RMD OPEN, 2022, 8 (02):
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers
    Brown, Philip M.
    Pratt, Arthur G.
    Isaacs, John D.
    [J]. NATURE REVIEWS RHEUMATOLOGY, 2016, 12 (12) : 731 - 742
  • [7] BUCK SF, 1960, J ROY STAT SOC B, V22, P302
  • [8] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [9] The ESPOIR cohort: A ten-year follow-up of early arthritis in France: Methodology and baseline characteristics of the 813 included patients
    Combe, Bemard
    Benessiano, Joealle
    Berenbaum, Francis
    Cantagrel, Alain
    Daures, Jean-Pierre
    Dougados, Maxime
    Fardellone, Patrice
    Fautrel, Bruno
    Flipo, Rene-Marc
    Goupille, Philippe
    Guillemin, Francis
    Le Loet, Xavier
    Logeart, Isabelle
    Marlette, Xavier
    Meyer, Olvier
    Ravaud, Philippe
    Rincheval, Nathalle
    Saraux, Alain
    Schaeverbeke, Thierry
    Sibilia, Jean
    [J]. JOINT BONE SPINE, 2007, 74 (05) : 440 - 445
  • [10] Randomised comparison of initial triple DMARD therapy with methotrexate monotherapy in combination with low-dose glucocorticoid bridging therapy; 1-year data of the tREACH trial
    de Jong, P. H.
    Hazes, J. M.
    Han, H. K.
    Huisman, M.
    van Zeben, D.
    van der Lubbe, P. A.
    Gerards, A. H.
    van Schaeybroeck, B.
    de Sonnaville, P. B.
    van Krugten, M. V.
    Luime, J. J.
    Weel, A. E.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) : 1331 - 1339