Dementia risk predictions from German claims data using methods of machine learning

被引:16
作者
Reinke, Constantin [1 ]
Doblhammer, Gabriele [1 ,2 ]
Schmid, Matthias [2 ,3 ]
Welchowski, Thomas [3 ]
机构
[1] Univ Rostock, Inst Sociol & Demog, Ulmenstr 69, D-18057 Rostock, Germany
[2] German Ctr Neurodegenerat Dis, Bonn, Germany
[3] Univ Bonn, Med Fac, Inst Med Biometry Informat & Epidemiol IMBIE, Bonn, Germany
关键词
calibration; dementia; discrimination; Germany; health claims data; machine learning; risk factors; ALZHEIMERS-DISEASE; COGNITIVE IMPAIRMENT; PREVALENCE; EPIDEMIOLOGY; VALIDATION; DECLINE;
D O I
10.1002/alz.12663
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction We examined whether German claims data are suitable for dementia risk prediction, how machine learning (ML) compares to classical regression, and what the important predictors for dementia risk are. Methods We analyzed data from the largest German health insurance company, including 117,895 dementia-free people age 65+. Follow-up was 10 years. Predictors were: 23 age-related diseases, 212 medical prescriptions, 87 surgery codes, as well as age and sex. Statistical methods included logistic regression (LR), gradient boosting (GBM), and random forests (RFs). Results Discriminatory power was moderate for LR (C-statistic = 0.714; 95% confidence interval [CI] = 0.708-0.720) and GBM (C-statistic = 0.707; 95% CI = 0.700-0.713) and lower for RF (C-statistic = 0.636; 95% CI = 0.628-0.643). GBM had the best model calibration. We identified antipsychotic medications and cerebrovascular disease but also a less-established specific antibacterial medical prescription as important predictors. Discussion Our models from German claims data have acceptable accuracy and may provide cost-effective decision support for early dementia screening.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 50 条
[41]   Burden of dry eye disease in Germany: a retrospective observational study using German claims data [J].
Siffel, Csaba ;
Hennies, Nora ;
Joseph, Corey ;
Lascano, Valeria ;
Horvat, Pia ;
Scheider, Maria ;
Ganzera, Frank .
ACTA OPHTHALMOLOGICA, 2020, 98 (04) :E504-E512
[42]   Exploring Risk Factor Interactions across the Development Stages of Dementia using an Explainable Machine Learning Model [J].
Luo, Zeqi ;
Danso, Samuel O. .
2024 29TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, ICAC 2024, 2024, :465-470
[43]   Learning From Clinical Consensus Diagnosis in India to Facilitate Automatic Classification of Dementia: Machine Learning Study [J].
Jin, Haomiao ;
Chien, Sandy ;
Meijer, Erik ;
Khobragade, Pranali ;
Lee, Jinkook .
JMIR MENTAL HEALTH, 2021, 8 (05)
[44]   From Data to Diagnosis: Machine Learning Revolutionizes Epidemiological Predictions [J].
Rahman, Abdul Aziz Abdul ;
Rajasekaran, Gowri ;
Ramalingam, Rathipriya ;
Meero, Abdelrhman ;
Seetharaman, Dhamodharavadhani .
INFORMATION, 2024, 15 (11)
[45]   Data Mining and Machine Learning Methods for Robust Reliability Predictions on Automotive Components [J].
Bonato, Marco ;
Krishnamoorthy, Murali ;
Goge, Philippe .
2022 68TH ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2022), 2022,
[46]   Optimizing age-related hearing risk predictions: an advanced machine learning integration with HHIE-S [J].
Yang, Tzong-Hann ;
Chen, Yu-Fu ;
Cheng, Yen-Fu ;
Huang, Jue-Ni ;
Wu, Chuan-Song ;
Chu, Yuan-Chia .
BIODATA MINING, 2023, 16 (01)
[47]   Identifying inpatient mortality in MarketScan claims data using machine learning [J].
Xie, Fenglong ;
Beukelman, Timothy ;
Sun, Dongmei ;
Yun, Huifeng ;
Curtis, Jeffrey R. .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 (11) :1299-1305
[48]   Estimation of the epidemiology of dementia and associated neuropsychiatric symptoms by applying machine learning to real-world data [J].
Mar, Javier ;
Gorostiza, Ania ;
Arrospide, Arantzazu ;
Larranaga, Igor ;
Alberdi, Ane ;
Cernuda, Carlos ;
Iruin, Alvaro ;
Tainta, Mikel ;
Mar-Barrutia, Lorea ;
Ibarrondo, Oliver .
REVISTA DE PSIQUIATRIA Y SALUD MENTAL, 2022, 15 (03) :167-175
[49]   Association of tibolone and dementia risk: a cohort study using Korean claims data [J].
Han, Minjung ;
Chang, Jooyoung ;
Choi, Seulggie ;
Cho, Yoosun ;
Lee, Gyeongsil ;
Park, Sang Min .
GYNECOLOGICAL ENDOCRINOLOGY, 2021, 37 (06) :567-571
[50]   Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors [J].
Brankica Bratić ;
Vladimir Kurbalija ;
Mirjana Ivanović ;
Iztok Oder ;
Zoran Bosnić .
Journal of Medical Systems, 2018, 42