On polynomials in primes, ergodic averages and monothetic groups

被引:0
作者
Hancl, Jaroslav [1 ]
Nair, Radhakrishnan [2 ]
Verger-Gaugry, Jean-Louis [3 ]
机构
[1] Univ Ostrava, Dept Math, 30 Dubna 22, Ostrava 1, Czech Republic
[2] Univ Liverpool, Math Sci, 1 Peach St, Liverpool L69 7ZL, England
[3] Univ Grenoble Alpes, Univ Savoie Mont Blanc, LAMA, CNRS UMR 5127, F-73000 Chambery, France
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Polynomial in primes; Ergodic averages; A-adic numbers; Strong uniform distribution; CIRCLE METHOD APPROACH; SUBSETS; THEOREM;
D O I
10.1007/s00605-024-01948-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums
引用
收藏
页码:47 / 62
页数:16
相关论文
共 50 条
[41]   Uniform Convergence of Cesaro Averages for Uniquely Ergodic C*-Dynamical Systems [J].
Fidaleo, Francesco .
ENTROPY, 2018, 20 (12)
[42]   NON-CONVERGENCE OF SOME NON-COMMUTING DOUBLE ERGODIC AVERAGES [J].
Austin, Tim .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (04) :1701-1707
[43]   SEMINORMS FOR MULTIPLE AVERAGES ALONG POLYNOMIALS AND APPLICATIONS TO JOINT ERGODICITY [J].
Donoso, Sebastian ;
Koutsogiannis, Andreas ;
Sun, Wenbo .
JOURNAL D ANALYSE MATHEMATIQUE, 2022, 146 (01) :1-64
[44]   Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations [J].
Chu, Qing ;
Frantzikinakis, Nikos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :877-897
[45]   Quantitative norm convergence of double ergodic averages associated with two commuting group actions [J].
Kovac, Vjekoslav .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 :860-874
[46]   Trigonometric polynomials and multidimensional random walks: application to the ergodic theory [J].
Schneider, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (05) :617-646
[47]   The McKay conjecture for exceptional groups and odd primes [J].
Spaeth, Britta .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) :571-595
[48]   Approximate Invariance for Ergodic Actions of Amenable Groups [J].
Bjorklund, Michael ;
Fish, Alexander .
DISCRETE ANALYSIS, 2019, :56
[49]   Multiple ergodic averages along functions from a Hardy field: Convergence, recurrence and combinatorial applications [J].
Bergelson, Vitaly ;
Moreira, Joel ;
Richter, Florian K. .
ADVANCES IN MATHEMATICS, 2024, 443
[50]   MULTIFRACTAL ANALYSIS OF SOME MULTIPLE ERGODIC AVERAGES FOR THE SYSTEMS WITH NON-CONSTANT LYAPUNOV EXPONENTS [J].
Liao, Lingmin ;
Rams, Michal .
REAL ANALYSIS EXCHANGE, 2013, 39 (01) :1-14